
Hare Hunting in the Wild Android: A Study on the Threat of
Hanging Attribute References

Yousra Aafer∗,1, Nan Zhang∗,2, Zhongwen Zhang3, Xiao Zhang1, Kai Chen2,3

XiaoFeng Wang2, Xiaoyong Zhou4, Wenliang Du1, Michael Grace4

1Syracuse University
2Indiana University, Bloomington

3SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences
4Samsung Research America

{yaafer, xzhang35, wedu}@syr.edu, {nz3, xw7}@indiana.edu, {zhangzhongwen, chenkai}@iie.ac.cn, {x.zhou01, m1.grace}@samsung.com

ABSTRACT
Android is characterized by the complicated relations among its
components and apps, through which one party interacts with the
other (e.g., starting its activity) by referring to its attributes like
package, activity, service, action names, authorities and permis-
sions. Such relations can be easily compromised during a cus-
tomization: e.g., when an app is removed to fit an Android version
to a new device model, while references to the app remain inside
that OS. This conflict between the decentralized, unregulated An-
droid customization process and the interdependency among dif-
ferent Android components and apps leads to the pervasiveness of
hanging attribute references (Hares), a type of vulnerabilities never
investigated before. In our research, we show that popular Android
devices are riddled with such flaws, which often have serious secu-
rity implications: when an attribute (e.g., a package/authority/ac-
tion name) is used on a device but the party defining it has been
removed, a malicious app can fill the gap to acquire critical system
capabilities, by simply disguising as the owner of the attribute.

More specifically, we discovered in our research that on vari-
ous Android devices, the malware can exploit their Hares to steal
the user’s voice notes, control the screen unlock process, replace
Google Email’s account settings activity and collect or even modify
the user’s contact without proper permissions. We further designed
and implemented Harehunter, a new tool for automatic detection of
Hares by comparing attributes defined with those used, and analyz-
ing the references to undefined attributes to determine whether they
have been protected (e.g., by signature checking). On the factory
images for 97 most popular Android devices, Harehunter discov-
ered 21557 likely Hare flaws, demonstrating the significant impacts
of the problem. To mitigate the hazards, we further developed an
app for detecting the attempts to exploit Hares on different devices
and provide the guidance for avoiding this pitfall when building
future systems.

∗The two lead authors are ordered alphabetically.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CCS’15, October 12–16, 2015, Denver, Colorado, USA.
c© 2015 ACM. ISBN 978-1-4503-3832-5/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2810103.2813648.

1. INTRODUCTION
Never before has any operating system (OS) been so popular and

diverse as Android. So far, over one billion mobile devices are run-
ning the OS, whose official versions (Android Open Source Project
or AOSP) have been aggressively customized into thousands of sys-
tem images by almost everyone in the production chain, hardware
manufacturers (e.g., Qualcomm), device manufacturers (e.g., Sam-
sung, LG, HTC), carriers (e.g., Verizon, AT&T, etc.) and others,
for the purposes of tailoring the OS to different hardware platforms,
countries/regions and other needs. This practice has led to a highly
fragmented ecosystem, a wild wild west when it comes to the sup-
ports for Android applications (app for short) to operate across dif-
ferent devices (e.g., phones from different manufacturers). To put
this unregulated ecosystem under control, Google has launched the
Android Compatibility Program [1] to guide the customization pro-
cess. This effort, however, fails to address a serious concern that
comes with the aggressive customization: security hazards could
arise when proper precautions have not been taken in changing the
OS and apps to fit different devices.
Hares in the Wild Wild Android. For example, the manufacturer
may customize a smartphone OS for a tablet without 3G capability
by removing some components, including the messaging and tele-
phony provider apps; however, in the presence of the apps capable
of receiving SMS/MMS messages, malware on the tablet could im-
personate the missing telephony providers (using its SMS/MMS
authorities) to communicate with those apps and their users (e.g.,
cheating them into believing that their friends are sending them
messages from the VoIP channel). Fundamentally, what causes the
problem here is the intrinsic interdependent relations between dif-
ferent Android components (apps and framework services), which
connect one party to another through references to the latter’s at-
tributes such as package, activities, services names, authorities of
content providers and permissions: e.g., startActivity called
by one app to invoke another’s activity (whose name is specified
through setClassName). Customizations made to those com-
ponents, if not well thought-out, could easily break some of such
relations, resulting in the references to nonexisting attributes (e.g.,
the authorities of the SMS/MMS providers not on the tablet). We
call them hanging attribute references, or simply Hare.

As a side effect of the Android fragmentation, Hares could also
be brought in by the third-party developer who designs her app to
run on various Android versions, with or without certain service
components it utilizes. For example, a reference to the nonexist-
ing messaging content provider could also be embedded in a third-
party app meant to work on both the smartphone and the tablet.

Compared with the customization flaws discovered in the prior re-
search, which are about misconfigurations of Linux-layer device
drivers [26], the hanging reference is a framework-layer issue and
potentially more pervasive, given the fact that system apps on that
layer have always been the focus of a customization [24]. How-
ever, such a problem has never been studied, whose security impli-
cations, scope and magnitude, therefore, are not clear at all.
Our findings. This new type of vulnerabilities have first been dis-
covered in our research, which shows that they are indeed both
security-critical and extensive. More specifically, we found that a
Hare on Note 8.0 can be exploited to steal the user’s voice note and
another flaw on Tab S 8.4 allows a malicious app to impersonate the
Facelock guard to gain control on the user’s login authentication.
The popular Tango app contains an unprotected reference to the
missing sms, which can be leveraged to steal the user’s messages.
Also through hijacking various packages, activities or missing con-
tent providers, the adversary is able to replace Google Email’s inter-
nal account settings interface, inject activities into LG FileManager
and LG CloudHub to steal the user’s password, and trick S-Voice
into launching a malicious program whenever the user needs to use
the pre-installed voice recorder. Moreover, on Note 3 (phone) and
Note 8.0 (tablet), a Hare related to an absent permission can be ex-
ploited to steal all the contact information (e.g., email, phone num-
ber, etc.) of the device user and even tamper with its content (e.g.,
changing a friend’s phone number, email and URL to those under
the adversary’s control), when the malicious app does not have the
privilege to do so.

To understand the scope and magnitude of the security hazards
introduced by Hares, we ran a new tool to automatically evaluate
over 97 OS images for Google, Samsung, LG, HTC and Motorola
devices. This measurement study shows that unprotected Hares
exist on every single device we tested and are completely open to
exploits. Also interestingly, we found that though such flaws can
be caused by carriers and other parties, apparently they have been
primarily introduced by the manufacturers when customizing the
same OS to different device models. Further, the problems are still
pervasive even on the latest OS versions and phone models, across
different manufacturers, indicating that this security risk has yet
come to their attentions. These findings point to the gravity of such
security hazards and the urgent need to develop effective solutions
to address them. We reported the high-profile Hares discovered in
our research to Google, Samsung and other related organizations,
who all acknowledged the importance of our findings. Video demos
of some attacks are posted on a private website [6].
Detection and protection. Our measurement study was made pos-
sible by Harehunter, a new tool for automatic detection of the Hare
vulnerabilities within system apps. For this purpose, Harehunter
first performs a differential analysis, comparing all the attributes
defined by the system apps on an Android image with those re-
ferred to by them. Any discrepancy between the definitions and the
references reveals a Hare risk. This instance is further evaluated
through automatic program analysis to find out whether it is actu-
ally protected: e.g., whether a package’s signature has been verified
before its activity is invoked. If not, then the problem is reported
as a likely Hare (LHare) case. Running Harehunter on 97 popular
device images, we discovered 21557 likely Hares within 3450 vul-
nerable system apps, which have been documented in a database.
This database is utilized by a protecting app we developed, called
HareGuard, to inspect every newly installed app on these devices,
identifying the suspicious ones that attempt to exploit the Hares
there, thereby securing the device even before its manufacturer can
fix the problems. Our study further evaluated the efficacy and per-

formance of Harehunter and HareGuard, which were both shown
to be highly effective. We further discussed the lessons learnt from
our study and the effort that needs to be made to avoid similar prob-
lems in the development of future systems.
Contributions. The scientific contributions of the paper are out-
lined below:

• New findings. We discovered Hare, a new category of Android
vulnerabilities never known before. The problems are not iso-
lated, random bugs and actually caused by the fundamental con-
flict between the under-regulated Android customization process
and the complicated interdependencies among the apps and com-
ponents on different Android systems. Our research reveals the
significant impacts of the flaws, which could lead to privilege es-
calation or information leaks on almost every popular Android
device we inspected. Given the serious consequences of the
flaws once they are exploited, our research highlights the impor-
tance of incorporating proper security checks into the ongoing
effort on regulating the highly fragmented Android ecosystem.

• New techniques. We developed a set of new techniques for auto-
matically detecting Hares within different Android versions and
protecting them against exploits. These tools can be utilized by
the device manufacturers and other parties to improve the secu-
rity quality of their custom OSes. Also the Android user can
get immediate protection for her device by simply installing our
user-land app, before the manufacturers are able to fix their prob-
lems. More importantly, the design of our flaw detection mecha-
nism could inspire the follow-up research on automatic recovery
of the interdependent relations on different OS versions to sup-
port a securer customization process.

• Implementation and evaluation. We implemented Harehunter
and HareGuard, and evaluated them on a large number of cus-
tomized Android versions.

Roadmap. The rest of the paper is organized as follow: Section 2
introduces the background of our study; Section 3 elaborates differ-
ent Hare flaws and their security implications through a few high-
profile examples; Section 4 describes our detection and protection
techniques, and our large-scale measurement study using the tool;
Section 5 discusses the lessons learnt from our study; Section 6
compares our work with related prior research and Section 7 con-
cludes the whole paper.

2. BACKGROUND
Android Fragmentation. As mentioned earlier, the AOSP base-
lines have been intensively customized by different parties. For
each new version released by Google, hardware manufacturers such
as Qualcomm first change the OS to support their products, and
then the device manufacturers like Samsung, LG and HTC mod-
ify the version to enrich its functionalities and tailor it to different
devices (phones, tablets for different languages, countries/regions,
etc.). This customization process continues when the devices reach
carriers, such as Verizon and AT&T, which revise services or add
in new apps to distinguish their phones or tablets from those of oth-
ers. Further complicating the situation is Android upgrades: since
September 2008, 21 official versions (from 1.0 to 5.1) have been
released; such rapid updates outpace the distribution of the hard-
ware platforms capable of supporting the new systems. As a result,
a large number of custom Android systems have been built (over
10,000 for Samsung alone), and many of them, at various version
levels, co-exist in today’s market.

Prior research shows that the most heavily-customized compo-
nents are actually a device’s pre-installed apps. As an example, a
study found that across the smartphones produced by major device
manufacturers (Samsung, HTC, LG, Sony), only 18% of the pre-
installed apps were from their corresponding AOSP baselines, 65%
from the manufacturers and 17% added there by other parties such
as carriers [24]. Although it has been reported that some of these
apps contain known vulnerabilities, such as re-delegation [13], con-
tent leaks [15] and permission overprivilege [12], little has been
done to understand whether new, customization-specific security
flaws have also been introduced, which our study aimed at.
Attribute reference and Android security model. Different An-
droid components (apps or their internal activities, services, con-
tent providers, receivers, etc.) are connected together by Inter-
Component Communication (ICC), such as Intent messaging. An
Intent is a message that describes the operations to be performed
by the recipient: for example, startActivity that triggers an
activity (a set of user-interface related operations) associated with
an app. The app’s package name and activity name can be specified
through the Intent, using the method setPackage, setClassNa
me, setComponent, etc. Here the reference from one com-
ponent to another happens through the latter’s attributes, i.e., the
package name and activity name. When these attributes have not
been set for the communication, the Intent is implicit and needs
to be resolved by the OS to locate the recipient capable of han-
dling it. In this case, the sender needs to provide an action (e.g.,
android.intent.action.Edit through setAction) and
other parameters (such as data), and the recipient is supposed to de-
clare an Intent filter for its component (activity, service, receiver)
that matches these parameters in order to get the Intent. Another
important Android component is content provider, which manages
access to an app’s databases (structured datasets). To operate on
another app’s content provider, one must get an URI “content:
//authorityname/path”, through which the database table
corresponding to the path can be read (query) and written (e.g.,
insert), under the consent of its owner. In all such ICC commu-
nication, once the target of a reference (e.g., package name, activity
name, action name and authority name) is not present on the same
system, the reference becomes hanging, which can have serious se-
curity implications (Section 3).

Android protects its information assets through an application-
sandbox and permission model, in which every app runs within its
own compartment (enforced through the Linux user protection) and
can only access sensitive global resources and other app’s compo-
nents (content provider, service, activity, broadcast receiver) with
proper permissions. More specifically, the app can specify for each
of its components a permission and only process the message or
service request from the parties with the permission. For example,
a content provider can be guarded with a readPermission and
a writePermission; a broadcast receiver can be configured to
get the message only from those with a specific permission. Such
permission protection is mostly set statically within an app’s man-
ifest file, but it can also be specified programmatically, using the
APIs like checkPermission. An app that wants to obtain such
a permission needs to ask for the user’s consent. However, when
the party that defines such a permission does not exist on a cus-
tom version, the permission protection becomes hanging: anyone
that defines the permission can silently gain the privilege to access
protected app components.
Adversary Model. We consider a scenario where a malicious app
has been installed on the target device. However, the app does not
need to have any suspicious permissions. Actually, in the case of

hanging permission protection, it can define the missing permission
by its own to launch all kinds of attacks. To deliver the information
stolen from the device, the app needs the communication capability.
This can be done explicitly by asking for the network permission,
which has been requested by almost all apps. Alternatively, the
malicious app can utilize other channels, such as browser, to send
the data out, as demonstrated in the prior work [8].

3. EXPLOITING HARES
As mentioned earlier, a hanging attribute reference could be an

ICC call to a nonexisting package, activity, service (which could
be implicitly specified by the action or data filters) or authority of
a content provider, or the use of a missing permission to protect
an app component (service, activity, broadcast receiver and con-
tent provider). In the presence of such a reference, a malicious app
that claims its target attribute could gain access to the information
assets exposed by the ICC or guarded by the permission. More
specifically, when the reference is not guarded along the execu-
tion path involving the Hare, that is, no validation of the existence
and legitimacy of the attribute before using it, the malware that
acquires the attribute (e.g. package/authority/permission name) au-
tomatically obtains the privilege associated with the attribute and
becomes entitled to get sensitive messages from the sender, utilize
its component, etc. Examples of the attacks are presented in the
rest of the section.

It is important to note that not every hanging reference is ex-
ploitable. It can be protected by verifying the existence of the pack-
age that supposes to define it and then verifying its signature (ex-
tracted through getPackageInfo with flag GET_SIGNATURE
S), or its application info FLAG_SYSTEM, or by checking the cur-
rent device’s model, country code or other properties (e.g. getPro
perty). The presence of such protection was identified in our
study through automatic code analysis (Section 4.1). On the other
hand, if the security check is not in place, a Hare becomes vulner-
able to exploits, even though it could still be nontrivial to find the
conditions for triggering the code.

In our research, we systematically analyzed 97 Android factory
images from major device manufacturers (Google, Samsung, LG,
HTC, Motorola), and found 21557 hanging attribute references that
are likely to be vulnerable (Section 4.2). To understand the security
risks they may pose, we built end-to-end attacks on a few Hare in-
stances. Except a small set of them that were discovered manually,
which motivated the whole research, most of the Hares, particularly
those within pre-installed apps, were detected automatically using
Harehunter described in Section 4.1. We reported all these security-
critical flaws to the manufacturers, including Samsung, LG, Google
and HTC. Some of them have already been fixed. Following we
elaborate what we learnt about such vulnerabilities and the conse-
quences once exploited. Also, some of the attack apps we built
passed the security check of Google Play, while the rest were ac-
cepted by other leading app markets like Amazon Appstore and
even Samsung’s own app store, which demonstrates that the secu-
rity risks posed by these vulnerabilities are realistic1.

3.1 Package, Action and Activity Hijacking
Among all the Hares discovered in our research, the hanging ref-

erences often point to package names and actions. These attributes
play an important role in Hare exploits, even when the main tar-
gets are other attributes. This is because a missing package can be
1To avoid causing any damage to those inadvertently downloading our
apps, we either removed them as soon as they were approved by the app
markets or make sure that they do not send out sensitive user data or per-
form other actions that could harm the user.

the owner of absent activities, and actions often need to be specified
for receiving the Intent caused by vulnerable references. Moreover,
references to nonexisting activities were also found to be pervasive.
By exploiting these vulnerabilities, the malware can let a trusted
source (a system service or app) invoke a malicious activity, mak-
ing it look pretty trustworthy to the user. This enables a variety
of highly realistic phishing attacks that can lead to disclosure of
sensitive data, such as passwords. Following we elaborate a few
examples for such Hare flaws and our end-to-end attacks.

A limitation of the exploits on package names is that once the
owners of the targeted names are already on Google Play, our at-
tack apps can no longer be uploaded there, as the Play Store does
not allow two apps to have the same package names. This restric-
tion, however, is not applied to other attributes. So those not re-
lying on package names can still get into the Store. Also, third-
party app stores like Amazon and Samsung typically do not have
the target apps of our attacks and therefore the code for hijacking
their package names can often be accepted there. Interestingly, we
even managed to publish some of the attack apps on Samsung App
Store, even though they performed days of manual analysis on our
submission.
Stealing voice note. S-Voice is a personal assistant and knowledge
navigator service app pre-installed on certain devices (e.g. Note
8.0). One of its features is voice memo: the user can simply say
“take memo” or “take note” to activate the functionality and fol-
low the instruction (“please say your note”) to record her note.
After the note is taken, the app first checks whether another sys-
tem app com.vendor.android.app.memo (memo for short)
exists, and if so, connects itself to the latter’s service by calling
bindService using an action name specified by its Intent filter.
This hands over the note to the memo app. In the case that the app
is not there, S-Voice looks for another system service to handle the
voice note.

We found that S-Voice fails to verify the signature of memowhen
referring to it. As a result, on the device where the app is miss-
ing, the references to both its package name and action (through
bindService) become hanging. A malicious app can then im-
personate memo using its package/action names to steal the user’s
voice note. In our research, we built an attack app with the package
name of memo that defines a service with the action Intent filter
com.vendor.android.intent.action.MEMO_SERVIC
E. The app also includes an interface for receiving service requests
and data from S-Voice. We ran it on top of Note 8.0, a device that
does not have the memo app, and successfully stole the voice note
recorded from the user. Our attack app was successfully uploaded
to Amazon Appstore. A video demo is posted on our private web-
site [6].
Cheating AOSP keyguard. Prior to 5.0 (only around 10% of the
market share [5]), all AOSP versions after 2.3 support face-based
screen unlock, which is done through a system app called Facelock
(com.android.facelock). Once this biometric authentica-
tion option is chosen by the user, the Android Keyguard service will
bind itself to a Facelock service, enabling the user to use her face
and the front camera to unlock her device. More specifically, when-
ever the security settings fragment within the Settings app is cre-
ated, Settings app will invoke isBiometricWeakInstalled
in LockPatternUtils framework class to check if the Face-
lock app is installed. If so, it will add Facelock as an available
screen lock option. Later when the user clicks on the option, Set-
tings sends an Intent to Facelock for configuration. After this step
is done (which also includes configuring a back-up PIN or Pattern),
FaceUnlock is set as the lock screen option. Under the option,

whenever the user clicks on a locked phone, Keyguard will bind
itself to the face-unlocking service by sending an Intent specifying
the action com.android.internal.policy.IfaceLock
Interface to the Facelock app. The screen is unlocked once
Facelock informs Keyguard that the user is authenticated.

A problem here is that on all the AOSP versions prior to 5.0
supporting the FaceUnlock option, the Android framework class
LockPatternUtils fails to verify the signature of the Facelock
app. As a result, on the device model where the app is not present,
the reference to its package name becomes hanging and can be ex-
ploited by a malicious app. In our research, we installed on Tab S
8.4 an attack app that impersonated com.android.facelock
along with the required setup activities and unlocking service, and
successfully activated the FaceUnlock option. When the option was
selected, the attacker app was invoked and consequently set as a
phone lock. When the user wished to unlock the screen, the attacker
app utilized the action com.android.internal.policy.
IfaceLockInterface to cheat Keyguard into binding to its
service. As a result, the malware gained full control of the screen
unlock process and was able to expose the device to whoever it
wanted. This attack poses a particularly serious threat to the mul-
tiuser framework provided by Google from Android 4.2, where an
attacker purposely installs the malicious Facelock app as a back-
door to other user’s accounts. In fact, once installed in the mali-
cious user’s account, the app will be immediately enabled on other
users accounts as discussed in the prior research [22]. Note that
though Lollipop and the later versions no longer offer FaceUnlock,
and instead push the support for the functionality to device man-
ufacturers, this security flaw still has a significant impact, given
the fact that around 90% of the devices in the market are running
the versions below 5.0. The attack app was uploaded to Amazon
Appstore and its demo is on the website [6].
Faking Dropbox on LG. LG FileManager is a system app on LG
devices that helps the user manage her file system. It also supports
the use of Dropbox, which can be opened by clicking on a button
with the Dropbox icon. Interestingly, on LG G3 factory image,
our analyzer (Section 4.1) found that the button actually first tries
to launch an activity within com.vcast.manager, a Verizon
cloud app, and only goes to the Dropbox’s web login page once the
attempt fails. This program logic could be designed for the devices
distributed by Verizon but leave the reference to the service hanging
on those with other carriers and development phones.

In our research, we built an attack app to impersonate com.
vcast.manager and hijacked the activity pointed to by the hang-
ing reference. Since LG FileManager does not check the target
app’s signature before starting its activity, it blindly invoked our
app whenever the user clicked on the “Dropbox” button. This gives
the app an opportunity to show up a fake Dropbox login activity to
steal the user’s credentials.
Replacing official recorder. S-Voice performs voice recording us-
ing a default recorder. There are two such recorders, com.sec.
android.app.voicerecorder and com.sec.android.
app.voicenote. What happens is that S-Voice first attempts
to use the activity of voicerecorder and only when this fails
(the app does not exist), it switches to voicenote. Again, such a
two-choose-one process does not involve proper authentication of
the target. This allowed us to construct an attack app impersonating
voicerecorder app with the activity VoiceRecorderMain
Activity to control the target of the reference. On Note 8.0, our
experiment shows that the attacker’s activity was always invoked,
even in the presence of voicenote, which enabled it to record
sensitive user conversation or perform a phishing attack.

Hulu on watch. WatchON is a popular app that allows its user
to view the TV programs in their TV or select movies from the
Video-on-Demand service that integrates Hulu, Vudu, popcornflix,
etc. Once the user clicks on a Hulu movie, WatchON sends an im-
plicit Intent to launch Hulu’s activity. For some movies requiring a
HuluPlus account, the user will be redirected to an upgrade activity
where she can pay to be upgraded to the HuluPlus status.

The problem here is that the references to the Hulu’ activities
were found to be hanging in our research: even though WatchON
indeed checks whether Hulu exists before sending the implicit In-
tent, it fails to verify the app’s signature. Therefore, we were able
to build a malicious app that masqueraded as Hulu and set an Intent
filter with action hulu.intent.action.LAUNCH_VIDEO_ID
to get the upgrade Intent. Through launching a malicious activity,
we could cheat the user into entering her login credentials for Hulu.
More seriously, when she actually clicked on a paid movie, the
malware displayed an upgrade activity, asking for her credit-card
information. Since all these activities were triggered by WatchON,
the malware is very likely to get what it wants. We successfully
uploaded this attack app to Samsung App Store, which analyzed
our code both statically and dynamically for days.

3.2 Content-Provider Capture
Just like actions and activities, content providers are also exten-

sively used for inter-app and app-framework interactions. Specifi-
cally, an app may query another app’s content provider by directly
referring to its authority, one or more URIs formatted in a Java-
style naming convention: e.g., com.example.provider.ima
geprovider. However, just like what happens to other attributes,
such a reference (to the authority) can also become hanging, when
the related provider is in absence on a device. This opens another
avenue for the Hare exploit, when a malicious app strategically de-
fines a content provider to misinform the querier.

Note that unlike package name, duplicated authority names are
not forbidden on the Play Store. As a result, all our attack apps
were successfully uploaded to Google Play. Following we describe
a few attacks on the Hares of this type.
Hijacking Intent invocations. A surprising finding of our research
is that a subtle content-provider Hare within Google Email (ver-
sion 6.3-1218562) allows a malicious app to completely replace
its internal account settings with a malicious activity. Specifically,
Google Email, the standard email application on every Google phone,
lets the user configure different email accounts (Gmail, exchange,
etc.) through a Settings interface. To invoke this activity, the app
sends an implicit Intent with action android.intent.action.
EDIT and data content://ui.email.android.com/set
tings?account=x, where x is the email account ID used to
inform the account settings activity which email’s setting to edit.
These two parameters are specified within the account settings ac-
tivity’s Intent filter, as illustrated in the following code snippet:

1 <!-- Account Settings Intent Filters-->
2 <activity
3 android:name=".activity.setup.AccountSettings"

android:exported="true">
4 <intent-filter>
5 <action android:name="android.intent.action.EDIT"/>
6 <category android:name=

"android.intent.category.DEFAULT"/>
7 <data android:scheme="content"
8 android:host="ui.email.android.com"
9 android:pathPrefix="/settings"/>

10 </intent-filter>

This implicit Intent can be received by any app that specifies the
above Intent filter for its activity. However, when this happens,

Look for mime type of authority:
ui.email.android.com public String getType(Uri uri) {

return ?ABC?; }

Provider
with authority

?ui.email.android.com?
exists?

<intent-filter>
<action name= "Action.EDIT" />
<data scheme="content"
 host=?ui.email.android.com"
 pathPrefix=?/settings"/>
<intent-filter>

Intent i = new Intent(?Action.Edit?);
i.setData(Uri.parse(?content://ui.email.android.com/settings?account=id?);
startActivity(i);

GetType of Provider

<intent-filter>
<action name= "Action.EDIT" />
<data scheme="content"
 host=?ui.email.android.com"
 pathPrefix=?/settings?/
 mimeType= ?ABC"/ >
<intent-filter>

No

Yes

Launch acvtivity

Malicious Setting ActivityEmail Account Setting Activity

AMS Malicious provider with authority
?ui.email.android.com?

Account Setting Button Click

Email Activity

Figure 1: Exploiting a Hare Authority to Hijack Email Account
Settings Activity

Android pops up a window that lists all eligible receivers to let
the user select. What we want to do here is to circumvent this
protection, making a malicious app the only qualified recipient.

To this end, we analyzed the data part of the Intent filter in the
code snippet above and checked how the ActivityManagerSer
vice (AMS for short) resolves the Intent sent to this Intent filter.
Figure 1 depicts the Intent resolution steps in this scenario. If the
data’s scheme is content, AMSwill try to infer the MIME (Multi-
Purpose Internet Mail Extension) of the attached data to identify
the recipient that can handle this type: the data type here is sup-
posed to be given by the content provider ui.email.android.
com. However, this provider does not exist and as a result, the
type is typically ignored and the Intent is sent to whoever define
the action.EDIT and data filter (with scheme="content")
without a specified MIME type (as No branch in Figure 1).

The security risk here is that the reference to the content provider
is hanging and can be exploited by a malicious app defining that
provider. What the malware can do is to name the provider’s au-
thority ui.email.android.com to receive the query from the
AMS (the Yes branch in Figure 1), return a MIME type of its
own choice to misinform it, and in the meantime specify this type
within its own activity Intent filter, making itself the only eligi-
ble app to get the Intent (for invoking the account settings activ-
ity). In our research, our attack app took over the content provider
and responded to the query from AMS with a MIME type vnd.
android.cursor.dir/vnd.example.ABC. Also, the at-
tacker defines an Intent filter as illustrated in the next code snippet,
by claiming a mineType with the type it told the AMS.

1 <!-- Malicious Setting Activity Intent Filters-->
2 <activity android:name=".MaliciousSetting">
3 <intent-filter>
4 <action android:name=

"android.intent.action.EDIT"/>
5 <category android:name=

"android.intent.category.DEFAULT"/>
6 <data android:scheme="content"
7 android:host="ui.email.android.com"
8 android:pathPrefix="/settings"
9 android:mimeType=

"vnd.android.cursor.dir/vnd.example.ABC"/>
10 </intent-filter>

In this way, the Intent from the app went only to the malware,
leading the user to a malicious activity that lets her enter her pass-
word. A demo of the attack is posted on the website [6]. We also
successfully submitted the app to Google Play, before notifying
Google of this security-critical flaw.
Tango in the dark. Tango is a popular cross-platform messag-
ing app, offering audio, video calls over 3G, 4G and Wi-Fi net-
works. The app has been installed over 100 million times from
Google Play. To display SMS messages received, it sets up an In-
tent filter with the action android.provider.Telephony.
SMS_RECEIVED to get the Intent that carries the message from
the Telephony Manager. When the user sends a message through
Tango, the app saves it to sms, telephony’s content provider.

On a device without Telephony, Tango’s reference to its con-
tent provider becomes hanging. A malicious app, therefore, can
define a content provider using the authority sms to get the SMS
message the user sends. This can happen when the malware first
sends a message, causing the inadvertent user to reply. What can be
leveraged here is another vulnerability in Tango: the app does not
protect its SMS receiver with the system permission android.
permission.broadcast_sms, as it is supposed to do. This
allows any party broadcasts to the action SMS_RECEIVED to inject
a fake short message into the app. In our research, we implemented
the attack on Tab S 8.4, sending a fake message to Tango and re-
ceiving the user’s response using the malicious content provider.
The demo of the attack is online [6].
LG CloudHub scam. LG CloudHub is a system app that allows
managing cloud accounts, uploading data to clouds and access-
ing it from different devices. By default, the app supports Drop-
box and Box, and on various devices can also connect the user
to other services, including LG cloud provider. The information
about these additional services is kept in a content provider com.
lge.lgaccount.provider, which LG CloudHub looks up
each time when it is invoked.

Interestingly, on some phones, this provider does not exist. A
prominent example is LG G3. When this happens, LG CloudHub
just displays the default services, Dropbox and Box. However, this
makes the reference to the content provider a Hare case and ex-
poses it to the manipulation of a malicious app. Specifically, we
implemented an attack app that defined com.lge.lgaccount.
provider and placed in the content provider an entry for LG
Cloud account. This account was then displayed on the LG Cloud-
Hub available accounts list. Once it was clicked by the user, the
app sent an implicit Intent with action com.lge.lgaccount.
action.ADD_ACCOUNT. On the device (G3), no pre-installed
apps define the action, which enabled the malware to define the ac-
tion, claiming that it could handle the Intent. The consequence is
that the user’s click on the system app (LG CloudHub) triggered a
malicious activity that masqueraded as the login page for LG Cloud
account, which was used to cheat the user into exposing her pass-
word and other credentials. Here is the demo for the attack [6].

3.3 Permission Seizure
The Hare flaws can also be introduced by permissions, which

are defined by system apps and utilized to control the access to
various system (e.g., GPS, audio, etc.) or app-defined resources
(e.g., content providers, broadcast receivers, etc.). During the OS
customization process, the apps that specify the permissions (their
original “owners”) could be removed. In the meantime, if the re-
sources guarded by these permissions are still there, the uses of the
permissions (for protection) become hanging references. To exploit
such flaws, the adversary can simply define those missing yet still
being utilized permissions to gain access to the resources they pro-

tect. This problem was also found to be extensive in our research,
present on all 97 factory images we scanned. Making this threat
particularly perilous is the fact that Google Play does not check du-
plicate permissions: all our attack apps were successfully uploaded
there. Here we describe two examples.
Getting contacts from S-Voice. The system app S-Voice includes
a content provider (com.vlingo.midas.contacts.content
provider) that maintains the information about the user’s con-
tacts, including names, email addresses, telephone number, home
addresses, etc. Access to the provider is guarded by a pair of
permissions com.vlingo.midas.contacts.permission
.READ (READ for short) and com.vlingo.midas.contacts.
permission.WRITE (WRITE). However, we found that they are
not on defined on Galaxy Note 3 (phone) and Note 8.0 (tablet),
which opens the door for the exploit.

Specifically, we built an attack app for both devices, which de-
fined the READ and WRITE permissions. The app was found to
be able to successfully read all the contact data from S-Voice and
also update its data managed by the content provider at will, e.g.,
changing the email address, URLs and phone number of a contact,
which could lead to information leaks and other consequences (e.g.,
causing the user to visit the adversary’s URL placed in her friend’s
contact). We post a demo on our website [6].
Cracking Link. Link is a system app that allows its user to syn-
chronize her data (files, images, audio, video, etc.) across different
devices (phone, tablet, laptop, etc.). For this purpose, on a mo-
bile device (phone or tablet), the app uses a content provider com.
mfluent.asp.datamodel.ASPMediaStoreProvider to
maintain the information about such data, together with the geolo-
cations of the user. This provider is protected by com.mfluent.
asp.permission.DB_READ _WRITE (DB_READ_WRITE for
short). However, on many factory images, we did not find that the
permission has been defined. As a result, the protection here be-
comes hanging.

We built an attack app in our research that defined the DB_READ
_WRITE permission. On Galaxy Note 3 and Note 8.0, this app suc-
cessfully acquired sensitive information from the content provider,
including the user’s geolocations, all the meta-data of documents,
audio and video files (names, directory path, artist, genre, etc.).
Also, the malware was able to change the meta-data.

4. DETECTION AND MEASUREMENT
To better understand Hares and mitigate the security risks they

pose, we built a suite of tools in our research, including Harehunter,
an automatic analyzer that detects Hare flaws from pre-installed
apps on factory images, and HareGuard, an app that catches the
attempts to exploit known hares on a device. Using Harehunter,
we also performed a measurement study that inspected 97 factory
OS images for popular devices like Galaxy S5, S6, Note 3, 4, 8.0,
LG G3, Nexus 7, Moto X, etc. Our study brought to light 21557
likely Hares across these devices, which demonstrates the perva-
siveness of such security-critical vulnerabilities. In the rest of the
section, we elaborate the design and implementation of these new
techniques and our findings.

4.1 Harehunter
As mentioned earlier, Harehunter is designed to identify hanging

references within system apps and can achieve a high accuracy. We
focus on these apps because prior research shows that pre-installed
apps are the most intensively customized components across dif-
ferent Android devices [24], and therefore the most likely sources
of Hare vulnerabilities. Our manual analysis further indicates that

the major portion of Hares indeed come from system apps. On
the other hand, framework services may also include hanging ref-
erences, so do third-party apps (e.g., Tango). Harehunter can be
directly applied to find the problems in the third-party apps and ex-
tended (by tweaking the pre-processing step) to work on Android
services. Following we describe the idea, design of Harehunter and
its implementation.
Design. The idea behind our design is simple. For each factory im-
age, we first run a differential analysis: extracting all the attributes
(package names, actions, activities, services, content providers and
permissions) its pre-installed apps define and all the references to
the attributes within their code and manifests, and then comparing
the references with the definitions. Any discrepancy between these
two ends indicates the possible presence of Hares. For example,
if a package name is used to start an activity (startActivity)
or bind a service (bindService) but it is not owned by any pre-
installed apps on a device, the reference to it is likely to be hang-
ing. On the other hand, such a reference could turn out to be well
guarded: for example, before referring to the package, a system
app may first check its existence, collect its signature information
(e.g., getPackageInfo with GET_SIGNATURE flag) and ver-
ify it against the signature of the authentic app. To detect a truly
vulnerable Hare, we have to analyze the code between a potential
guard (e.g., functions for signature checking) and a possible hang-
ing reference (e.g., startActivity) to find out whether they
are indeed related. Only an unprotected reference will be reported
as a Hare.

To implement this idea, we designed a system with three key
components, Pre-processor, Differ and Guard Catcher, as illus-
trated in Figure 2: Pre-processor extracts app packages from an
OS image and converts them into the forms that can be analyzed
by follow-up steps; Differ performs the differential analysis and
reports possible hanging references; Catcher inspects the APK in-
volving such references to determine whether they have been guarded.
In the rest of the section, we describe how these components were
built in our research.

APK

Image

ODEX

Manifest

SMALI APK

Define-Use
analysis

Diff
analysis

Taint
Analysis

LHares

Property
Check

Pre-Processor

Differ

Guard Catcher

Figure 2: Design of Harehunter.

Pre-processing. From each factory image, Harehunter first collects
all its pre-installed apps, in the forms of APK and ODEX files, and
runs Apktool to extract each app’s manifest file and Baksmali
to decompile the app into Smali code. For some devices, particu-
larly those with Samsung, a system app’s ODEX file is often sep-
arated from its APK file, for the purpose of improving its load-
ing time, while Flowdroid, the static analyzer we built our system
upon, only works on APKs. To address this issue, our pre-processor
was implemented to automatically unzip an ODEX file, decompile

it and then recompile and compress it, together with its resource
files, into a new APK file. Further complicating this process is that
for Android 5.0 Lollipop, ODEX files are replaced with OAT files,
which include native code. For the app in such a form, Harehunter
first unzips its OAT files and then runs oat2dex to convert it to
the ODEX formate, enabling the above process to move forward.
Differential analysis. To perform a differential analysis, Differ
first searches all extracted, decompiled code and manifest files for
the definitions of the targeted attributes. Running an XML parser,
our approach can easily collect defined package, actions as well
as content providers authorities and permissions from individual
apps’ manifest file. Note that all these attributes, except the action
for receiving broadcast messages, can only be defined within the
manifest. Although the action used in an Intent filter for a broadcast
receiver can be specified programmatically, it only serves to get a
message, not invoke a service or activity, and therefore its absence
will not cause a Hare hazard.

Most references to these attributes are within the code, in the
forms of various API calls. Specifically, package names and actions
are utilized through startActivity, startActivityForRe
sult, startService, etc. The authority name of a content
provider appears in various operations on the provider, such as
update, query, delete and others. Permissions are claimed
in manifests or verified through checkPermission and other
APIs. To identify these references, Differ first locates the call sites
for all related functions from an app’s Jimple code (an intermediate
representation output by Soot [4]), and then performs a define-use
analysis from each call site to recover the targeted attribute names,
using the control-flow graph (CFG) constructed by Flowdroid. An
issue here is that Flowdroid cannot create a complete CFG, miss-
ing quite a few program entry points like onHandleIntent. In
our implementation, we added back as many entries as we could
find, but were still left with some target function calls whose related
CFGs could not be built by Flowdroid. For these calls, our current
prototype can only deal with the situation where the attribute names
are hardcoded within the related functions.
Guard detection. As mentioned earlier, references to missing at-
tributes are often protected. There are two basic ways for such pro-
tection, signature guard or feature guard. Figures 3 and 4 present
the examples for both cases. Signature guard tries to obtain the
signature of the package to be invoked, and compare it with what
is expected. In the example (Figure 3), this check is done through
extracting the signature of "com.facebook.katana" through
getPackageInfo with GET_SIGNATURES as a flag and then
invoking compareSignature to compare it with that of the le-
gitimate Facebook app, before binding to the target app’s service
(bindService). The presence of the authentic package can also
ensure the correctness of action and activity names. The other way
to protect these attributes is to check the build model of the cur-
rent device, since only some of them come with certain features
(in terms of packages, content providers and others): e.g., input
methods, email apps can all be different from builds to builds; SM-
S/MMS providers may not even exist on a tablet. As an exam-
ple, Figure 4 shows that an app first runs hasSystemFeature
to check whether the current device supports Google TV (com.
google.android.tv): if so, it invokes the app youtube.
googletv, and otherwise, just YouTube.

To detect such protection, Guard Catcher conducts a taint anal-
ysis through both an app’s data flows and control flows, using the
functionalities provided by Flowdroid. Specifically, our approach
first identifies a set of guard functions like hasSystemFeature
and getPackageInfowith GET_SIGNATURES parameter and

1 public boolean extendAccessToken(Context context,
ServiceListener servicelistener){

2 Intent intent = new Intent();
3 try{
4 PackageInfo pi =

context.getPackageManager().getPackageInfo
("com.facebook.katana",
PackageManager.GET_SIGNATURES);

5 // Compare signature to the legitimate Facebook
6 // app Signature
7 if (!compareSignatures

(pi.signatures[0].toByteArray())){
8 return false;
9 } else{

10 intent.setClassName("com.facebook.katana",
"com.facebook.katana.platform.
TokenRefreshService");

11 return context.bindService(intent, new
TokenRefreshServiceConnection(context,
servicelistener), 1);}

12 }catch(PackageManager.NameNotFoundException e){
13 return false;
14 }
15 }

Figure 3: Signature Based Guard Example

1 private void ViewVideo(Uri uri){
2 Intent intent = new

Intent("android.intent.action.VIEW", uri);
3 if (getPackageManager().hasSystemFeature

("com.google.android.tv")){
4 intent.setPackage("com.google.android.youtube.googletv");
5 } else{
6 intent.setPackage("com.google.android.youtube");
7 } startActivity(intent);
8 }

Figure 4: Feature Based Guard Example

then attempts to establish relations between them and the hang-
ing references discovered by the differential analysis, a necessary
condition for these references to be protected. For this purpose,
the outputs of these guards are set as taint sources and the refer-
ences (e.g., startActivity, bindService) are labeled as
taint sinks. Flowdroid is run to determine whether the taint can be
propagated from the former to the latter. For the sinks that cannot
be tainted, they are reported as likely Hares.

Running a full taint analysis (through both explicit and implicit
information flows) for every guard and reference pair can be very
slow. To make the guard detection more scalable, Catcher takes a
multi-step hybrid strategy, combining quick property checks with
the taint analysis. Specifically, it first inspects whether a source
and its corresponding sink are within the same method. When this
happens, in the vast majority of cases, they are related and there-
fore the reference is considered to be protected. Otherwise, our
approach further compares the package name involved in a signa-
ture check with that used for a reference. A match found between
the pair almost always indicates a protection relation. An example
is com.facebook.katana within the code snippet in Figure 3
that shows up both within getPackageInfo and setClassNa
me. Only when both checks fail, will the heavyweight taint analysis
be used. In our large-scale analysis of factory images (Section 4.2),
we found that most of the time, the guard for a reference can be
discovered in the first two steps.
Evaluation. We evaluated the effectiveness of our implementa-
tion in a measurement study, which involves the OS images for 97

Provider	
 	
 	
 	
 	
 	
 	

Authority	

28%	

Ac2on	

Name	

31%	

Package	

Name	

28%	

Permission	

13%	

Figure 5: Distribution of Hares across Different Hare Cate-
gories

popular devices, all together over 24000 system apps. Harehunter
reported 21557 likely Hares. From all these Hares, we randomly
sampled 250 and manually analyzed their code. Only 37, i.e., 14%,
were found to be false detection: that is, falsely treating a guarded
reference as a Hare. We further measured the false negative rate of
the Guard Catcher by randomly checking likely hanging references
reported by Differ and comparing the findings with what was de-
tected by Catcher. In all 250 samples, 46 (19%) were missed by our
implementation: i.e., true Hares falsely considered to be guarded.
Looking into those false positives and negatives, we found that they
were all caused by the incomplete call graphs output by FlowDroid.
Flowdroid is known to have trouble in dealing with ICC [18] and
other issues like missing entry points and incomplete call graphs.
When this happens, a taint analysis cannot go through.

4.2 A Large-scale Measurement Study
To understand the scope and magnitude of the security hazards

caused by Hares, we performed a large-scale measurement study
on 97 factory images. The study shows that Hares are indeed per-
vasive, with a significant impact on the Android ecosystem: over
21557 LHares were discovered and many of them could lead to the
consequences such as activity hijacking, data leakage and pollu-
tion. Following we report our findings.
OS Image collection. In our research, we collected 97 factory im-
ages from Samsung Update [3], Android Revolution [2] and physi-
cal devices, which include around 183 apps per image and 24185 all
together apps. These images are customized for 49 different phone
or tablet models, 36 countries and 23 different carriers. They oper-
ate Android versions from 4.0.3 to 5.0.2. The detailed information
is presented in Table 1. Please note that we are anonymizing ven-
dors upon their request.
Landscape. When analyzing those factory images, we found that
about 13% of their pre-installed apps could not be decompiled by
Apktool or analyzed by Flowdroid. Among those that could
be analyzed, Harehunter discovered all together 21557 flaws (un-
guarded hanging references) within 3450 vulnerable apps. Note
that some of these flaws might occur more than once within the
same app, and some of the vulnerable apps show up on multiple
devices. Our research reveals that every single image contains a
large number of Hare flaws, ranging from 8 to 598. On average,
14.3% of pre-installed apps on 4.X and 11.7% on 5.X were found
to be vulnerable. Table 2 shows the details.

Also as we can see from the table, the problems are also perva-
sive across different device manufacturers: both Vendor A and C
have a significant portion of their system apps involving hanging
references. By comparison, Vendor D has the smallest number of
flaws (29) and the lowest ratios (8%) of faulty apps. A possible rea-
son is that the OS images its devices run are the least customized
ones, which minimizes the chance for introducing Hares.

Figure 5 illustrates the distribution of the flaws across differ-
ent Hare categories. Most problems come from undefined action

Table 1: Android Images Collected
Vendor # of Images # of System Apps Avg # of System Apps per Image # of Countries # of Carriers # of OS Versions

Vendor A 83 21733 261 36 23 10
Vendor B 7 1561 223 1 1 4
Vendor C 1 174 174 1 1 1
Vendor D 4 398 99 1 1 3
Vendor E 2 319 159 2 1 2

Total 97 24185 183 36 23 10

Table 2: Hares Prevalence in System Apps per Vendor
Vendor Hares in Android 4.X Hares in Android 5.X Avg Hares per

Device
Min Hares
per Device

Max Hares per
Device# of Hares # of vulnerable apps # of Hares # of vulnerable apps

Vendor A 19279 3045 (18%) 608 99 (6%) 239 23 598
Vendor B 679 121 (13.3%) 425 85 (15.5%) 157 100 224
Vendor C N/A N/A 248 33 (21.5%) 241 248 248
Vendor D 107 31 (12.4%) 8 5 (5%) 29 8 45
Vendor E 187 23 (15.6%) 16 8 (12.1%) 101 16 187

Total 20252 3220 (14.3%) 1305 230 (11.7%) 153 8 598

names. By comparison, a relatively low percentage of permissions
were found to be involved in hanging references.
Impacts. The impacts of Hares are significant. In addition to the
end-to-end attacks we built (Section 3), we also randomly sampled
33 flaws and manually analyzed what could happen once they were
exploited. Note that due to the lack of a large number of physical
devices, all we could do is just static analysis to infer possible con-
sequences once an exploit succeeds. Such an analysis may not be
accurate, but it is still important for understanding the impacts of
this type of security flaws that have never been noticed before. The
outcomes of our analysis are shown in Table 3.

As we can see here, 5 instances of the randomly picked Hares
might be exploited to launch similar Phishing attacks as discussed
in Section 3, due to undefined package and activity names and/or
action names for activity Intent filters. One Hare found in the HTC
Task App allows redirecting an Intent through exploiting a non-
defined content provider used for Intent resolution, just like the
GoogleEmail attack. 4 Hares (on the devices such as Note 8.0 and
S5) might cause content leakage (notes and browser bookmarks)
once malware impersonates undefined content providers, which the
victim apps insert data into. 4 instances might expose user’s private
information when hanging package names are hijacked. Particu-
larly, we found that on Note 8.0, a hanging reference involves an
explicit Intent delivered to a nonexisting package. The Intent in-
cludes a content URI pointing to private data (e.g., photos) and
also a permission FLAG_GRANT_URI_PERMIS SION that en-
ables the recipient to read the data without requesting a permis-
sion. As a result, an unauthorized app using the target’s package
name could gain access to the data.

Also, on LG G3, a hanging reference to a nonexisting content
provider might open the door for the adversary to define those
providers to contaminate the data synchronized to the user’s other
devices. Further, our analysis reveals 3 instances that might cause
denial-of-service attacks when the adversary creates undefined con-
tent providers that victim apps use, and sets their exported flag
to false. From the app code, this attack could cause a security
exception when the victim app attempts to read or write to these
providers. A prominent example is Amazon MP3 app (pre-installed
on specific HTC models such as One M8). Once launched, it checks
an undefined provider. If a malicious app declares this provider and
sets its exported flag to false, Amazon MP3 will never be able to
run until the malicious app is uninstalled. Some other Hares may
lead to unexpected situations: e.g., an app with a certain package
name will not show up in system Task Managers and other apps on
LG G3 could not be forced to stop from the LG Settings app.

We also found that Hares in 3 apps might only cause display of

dialogs or notifications. Also, there are 6 hares related to missing
services whose functionalities we could not figure out. Finally, we
did not find any entry points for 4 Hares, which could be dead code.

Table 3: Possible Impact of 33 Randomly Picked Hares
Impact Hare Category # of Hares

Activity Hijacking Package and Activity Name 3
Activity Hijacking Action Name 2
Activity Hijacking Provider Authority 1

Data Leakage Provider Authority 4
Data Leakage Package and Activity Name 1
Data Pollution Provider Authority 1

D.O.S. Provider Authority 3
Dialog Popup Action Name of Activities 3

Others Package Name 5
Impact Not Clear Action Name of Services 6

Maybe Dead Code All Categories 4

Responsible parties. We further looked into which parties intro-
duce such flaws and when this happens. For this purpose, we in-
spected 6 images from Vendor A all running 4.4.2, as described
in Table 4. The percentage of Hare flaws that are uniquely intro-
duced by these models ranges from 9% to 29%. We further grouped
the images into subgroups (e.g., phone, tablet) and checked which
ones exhibit the highest percentage of common Hare cases. Tablet
models have the highest percentage of common Hares 63%, while
phone models have the second highest common Hares 56%. The
common Hare cases between a tablet and phone device model is
at most 38%. So customizing the OS to tablet models or to phone
models introduces a lot of Hares. In the meantime, we also com-
pared the flaws found on the same model (Phone 3 running Android
4.4.2)customized for different carriers. The results are in Table 5.

Table 4: Hare Flaws in Different Vendor A Models Running
Android 4.4.2

Model # of New Hares Introduced by Model
Tablet 1 106 (27%)
Phone 2 35 (21%)
Phone 3 75 (29%)
Tablet 4 57 (22%)
Tablet 5 22 (9%)
Tablet 6 72 (20%)

As we can see from Table 5 given a Phone 3 image, its cus-
tomizations across 6 carriers bring in about 3% to 20% of flaws.
Clearly, both manufacturers and carriers cause Hare flaws. How-
ever, the former apparently needs to take more responsibility than
the latter. Also, most Hares are likely to be introduced during the
OS customizations for different device models (phone or tablet).
Trend. Figure 6 further compares the ratios of vulnerable apps over
different OS versions across multiple manufacturers. For Vendor A

Table 5: Hares in Phone 3 Running Android 4.4.2 For Different
Countries and Carriers

Country Carrier # of Hares Introduced by Carrier
China China Unicom 51 (20%)
U.S. AT&T 22 (13%)
Chile Entel pcs 4 (3%)

Argentina Movistar 5 (3%)
Brazil Vivo 5 (3%)

S. Korea SK Telecom 44 (18%)

Figure 6: Ratios of Vulnerable Apps Across Different OS Ver-
sions and Manufacturers
devices, there is an observable trend that the higher versions (5.0.1
and 5.0.2) contain fewer Hares than the lower ones: the faulty ratio
comes from 26% on 4.0.3 down to about 8.2% on 5.0.2. On the
other hand, for Vendor B phones, the trend is almost constant: the
ratio is 14.3% on 4.2.2 and 15.1% on 5.0.1 . Also, on all these de-
vices, the Hare risks remain significant, which indicates that man-
ufacturers have not yet realized the gravity of this type of vulnera-
bilities.

4.3 App-level Protection
Motivation and idea. Fundamentally, the Hare flaws can only be
fixed by device manufacturers and app developers, who are sup-
posed to either remove the hanging references in their code or put
proper security checks in place. However, given the pervasiveness
of the problem and its root cause, i.e., the under-regulated Android
ecosystem, we believe that they cannot be completely eliminated
within a short period of time. Before their complete solution can be
implemented (Section 5), it is important to help individual Android
users protect their systems, in the presence of these flaws. Com-
pared with a frame-work layer protection, which can only be de-
ployed by manufacturers and carriers, the most practical solution is
app-level defense, as all the users need to do is just to install a pro-
tecting app from Google Play to get immediate protection against
the threats to the vulnerabilities on her system. We found that this
can actually be easily done.

In our research, we developed such simple protection, using an
app, called HareGuard, to scan other third-party apps whenever
they are installed to ensure that they are not taking advantage of
any known Hare vulnerabilities on a specific device model. Hare-
Guard collects a device’s model information and queries a server-
side database to acquire all the Hares within the model (which are
detected off-line, for example, through Harehunter). Whenever an
app is installed, HareGuard immediately checks its manifest file
for the package name, activity, action, authority name and permis-
sions it defines, making sure that the app does not intend to hi-
jack any missing attributes. This scanner app is invoked through
startForeground, running with a notification posted on the
Notification Center.
Implementation. Specifically, as soon as HareGuard is installed,

it calls Build class to collect the device information, including
Build.MANUFACTURER and Build.MODEL, and queries our
database for all the Hare flaws on the device. The scanner also uti-
lizes an Intent receiver with actions android.intent.action.
PACKAGE_ADDED to monitor new app installed and android.
intent.action.PACKAGE_CHANGED to detect whether an app
is updated. For each new or recently updated app, it uses the API
openXmlResourceParser to open its manifest file and iden-
tify all the attributes it defines. These attributes are then compared
with a set of hanging references retrieved from our Hare database to
detect Hare risks: i.e., defining an attribute associated with a hang-
ing reference. Once a risk is found, HareGuard alarms the user,
explaining potential security hazards to her and urging her to make
sure that the app indeed comes from a reliable source or simply re-
move it. To assist the user in this process, the scanner can compare
the signature of the app with the one belonging to the authorized
party, whenever it exists in the database.

We implemented HareGuard in our research, using a database
that documents the findings made by Harehunter when scanning
the factory images for popular mobile devices.
Evaluation. Our implementation of HareGuard was found to be
effective at detecting all the attack apps we built. We further eval-
uated its performance, whose impacts on its host system are mini-
mum: the scanner was found to utilize only 4.29 MB memory and
consume 0.29% CPU when scanning an app’s manifest. To pro-
tect the Android users from the serious security risks brought in by
Hares, we plan to release the app in the near future, as soon as the
code has been thoroughly evaluated.

5. DISCUSSION
Hares are not just a few isolated, random bugs introduced by im-

plementation lapses. The presence of such flaws implies the weak-
nesses in Android’s design philosophy and its ecosystem. Funda-
mentally, Android is a complex system, whose components and
apps are meant to work together, which leads to highly complicated
interdependent relations among them. In the meantime, the An-
droid ecosystem is known to be highly diverse and de-centralized:
each OS version is customized and re-customized by various par-
ties almost independently and utilized by anyone who can build
an app for the version; so far little guidance has been provided to
help regulate the customizations and app development, making sure
that they respect the existing complicated relations among system
components and apps introduced by themselves and other parties
(AOSP, manufacturers, carriers, app developers, etc).

In the absence of such guidance and a proper enforcement mech-
anism, hanging references become inevitable. As evidenced by
our research (the first one on this new category of problems), in-
deed Hares are pervasive, existing on every single device we in-
spected, and also indeed they are security-critical, endangering sen-
sitive user data (e.g., voice memo) and even the proper execution of
system apps (e.g., activity injection in Google Email). Even though
not every problem reported by Harehunter is exploitable, which de-
pends on the conditions for running vulnerable code, the pervasive-
ness of such unprotected code is alarming: without deep inspection
of individual cases, no one knows whether they can be exploited
under certain conditions, leading to unexpected consequences.

Moving forward, we believe that systematic effort needs to be
made to eliminate these flaws, and also lessons need to be learnt
to avoid the similar pitfall when building other open computing
systems. Following are a few thoughts.
Elimination of Hares. To completely eliminate the Hare risks, it
is important to have such interdependent relations well documented

and make them open to the parties involved in OS customizations
and app development. Also, there should be a policy in place that
requires that anyone who modifies the OS or builds an app should
not create a hanging relation such as referring to a nonexisting at-
tribute, and a mechanism for the policy compliance check. The
policy enforcement here can leverage the existing Android com-
patibility program, which currently still cannot do security check.
The challenging part is the collection of the interdependent rela-
tions for all known Android versions. Such information is not there
yet. Actually, our study shows that the manufacturer seems un-
aware of the relations on its own device, often breaking them and
causing Hares when customizing an Android version to different
models. A systematic tool, like Harehunter, is needed to identify
such information.

In the meantime, effort should be made to secure each attribute
reference. Most importantly here is explicit authentication before
a reference. All too often we have seen that references are only
protected implicitly: e.g., the reference to a system app is secured
by the presence of the app on a device, which excludes any other
app using the same package name. Such protection is fragile, com-
pletely falling apart once the app is removed when the OS is cus-
tomized for a new device model.

On the other hand, a security check can be more complicated
than it appears to be. More specifically, even though references
to package names can be directly guarded with a signature check.
Other attributes like content providers, actions, etc. can be directly
used and their presence on a specific device is often verified by
checking the current device model and other features. The correct-
ness of such a check, again, hinges on the knowledge about the
components/apps relations across different versions, models, etc.,
which need to be recovered by Harehunter and other similar tools.
Protection of legacy systems. Before we can even think about how
to eliminate Hares in developing future systems and apps, an issue
we first need to address is how to secure existing devices, which,
as shown in our research, are riddled with different kinds of Hare
flaws. The techniques we developed, Harehunter and HareGuard,
made a first step toward identification and protection of these vul-
nerabilities. Particularly, as mentioned earlier, Harehunter can also
play a critical role in gathering the interdependent relations to help
secure new systems and apps. With its great potentials, our cur-
rent implementation is still preliminary: it introduced about 14%
of false positives and missed 19% of truly vulnerable cases in our
study (Section 4.1). Most problems are caused by Flowdroid, the
static analysis tool that supports our system. It is conceivable that
Harehunter will become more effective once a more capable ana-
lyzer is used. Also, for device manufacturers who have the source
code for all the services and system apps, a tool similar to Hare-
hunter, but working on source code, could be more accurate in
detecting the Hare flaws. We expect that these directions will be
explored by both the academia and the industry in the near future.

6. RELATED WORK
In this section, we review related prior research and compare our

work with those studies.
Security risks in Android customizations. The security risks in-
troduced by the fragmented Android ecosystem has been studied
before. Prior research analyzes the pre-installed apps on 10 factory
images and reports the presence of a few known problems such as
over-privilege, permission re-delegation, etc [13] and [12]. Unlike
this prior study, here we focus on a type of vulnerabilities never
reported before, hanging attribute references, which is also specific
to the customization process. Our research demonstrates the seri-

ous consequences of the new flaws and identifies their fundamental
causes. This has never been done before.

Another related study is the security configurations of Android’s
Linux device drivers [26]. The research finds that many of these
devices have not been properly protected, causing their exposures
to the parties that should not access them: e.g., an app can directly
command an exposed camera driver to take picture, even when it
does not have the camera permission. This research also involves
a measurement study that reports the pervasiveness of the prob-
lem across over 2,000 factory images. By comparison, our study
on Hares happens on pre-installed apps, which requires more com-
plicated code analysis than a simple check of Linux drivers’ secu-
rity configurations, as does the prior work [26]. Also importantly,
pre-installed apps are known to be the main target of a customiza-
tion [24] and their customization-specific flaws have never been
investigated before, up to our knowledge.
Activity and Service Hijacking on Android. Earlier research
work [10] has studied unauthorized intent receipt where an attacker
can hijack activities and services in case of implicit intents. The
work does not directly touch the Hare flaws as it does not require
the absence of the legitimate activity/service being referred. Rather,
it discusses the cases where multiple recipients are present on the
device. In our work, we discuss that even an explicit intent can be
hijacked when the legitimate recipient is not in place. We further
evaluate the security consequences of hijacking other components
such as content providers and permissions.
Vulnerability detection on Android. Security vulnerabilities on
Android have been extensively studied. Prominent examples in-
clude the re-delegation problem [13], content provider leaks [15],
security issues in push-cloud messaging [19] and others [16]. How-
ever, up to our knowledge, never before has anyone investigated the
security risks of hanging references: i.e., the parties to be invoked
do not exist and can therefore be impersonated by a malicious app.

Most related to our work is the recent study on security risks in
Android upgrades [25]. What has been found is that a malicious
app installed on a lower version Android can claim the capabilities
(e.g., permissions, shared UID, etc.) only show up on a higher ver-
sion, and then automatically acquire such capabilities during an OS
upgrade. This problem (called Pileup [25]) is caused by the logic
flaws within the Android upgrade mechanism, which tends to avoid
substituting a new app for the existing one with the same attributes
such as package names. In a Pileup exploit, new attributes not in
use are preempted by a malicious app before an upgrade, while in a
Hare attack, the adversary takes advantage of the attributes that do
not exist but are still used on a device.
Static analysis on Android. The Hare flaws can be detected by
statically analyzing Android apps. Techniques serving this pur-
pose has been extensively studied [11, 14, 27, 23]. Particularly,
FlowDroid [7] has been widely used for taint analysis on Android
apps. With its popularity, the tool suffers from a few limitations.
For example, it does not handle ICC (inter-component communi-
cation) well, which later has been improved by systems such as
Epicc [21], Didfail [17] and IccTA [18]. This problem could make
guard detection more difficult: e.g., when a reference to a package
has been separated by an ICC call from the program location where
its signature is verified. In practice, however, this is found to rarely
happen: a vast majority of security checks occur right before the
reference. Therefore, this weakness has never become a big issue
in our study. What does cause a problem is Flowdroid’s limited ca-
pability to identify all the entry points within an app, missing a lot
of callback functions such as onHandleIntent. As a result, we
may not be able to precisely analyze some references that can only

be found through such missing entries. Again, the problem can be
addressed by a more capable static analysis tool, which will further
enhance the accuracy of our approach.
Dangling pointer protection. Remotely related to our work is
the prior research on dangling pointers, a memory vulnerability in
which a pointer in a program does not point to a valid object [9].
The problem has been studied for decades and can be detected by
various tools such as Valgrind [20]. Given the conceptual similarity
between this old problem and Hare, the new security risk actually
comes from the interconnections among different apps and system
components, whose detection and mitigation need to be done across
the whole operating system. This poses a new challenge to the sys-
tem security research.

7. CONCLUSION
In this paper, we report our research on a serious Android secu-

rity flaws that have never been studied before. The problem, called
Hare, has been caused by the conflict in the decentralized, unregu-
lated Android customization process and the complicated interde-
pendencies among different Android apps and components. Once
an Android version is modified without fully considering such de-
pendency relations, references to some attributes can easily become
hanging, which can be taken advantage by the adversary to steal
sensitive user information or compromise the integrity of her data.

Our research brings to light the significance of this security risks,
revealing the damages that can be done on various Android de-
vices, such as stealing voice memos, controlling the screen un-
lock process, replacing Google’s Email account settings activity,
etc. We further built the first tool for automatically detecting Hares
and utilized it to analyze the factory images for 97 popular An-
droid devices. This study shows that almost every single device
contains a large number of Hare flaws and manufacturers have yet
realized the significance of this security hazard. To provide An-
droid users immediate protection, we developed an app for auto-
matically identifying the attempts to exploit the vulnerabilities on
various devices. Also our study highlights the importance for reg-
ulating the fragmented Android ecosystem, and offering guidance
and enforcement mechanisms to improve the security assurance for
the system customization and app development.

8. ACKNOWLEDGEMENTS
We thank anonymous reviewers for their comments. This project

was supported in part by the NSF grants CNS-1117106, 1223477,
1223495, 1318814 and 1527141. Kai Chen was supported in part
by NSFC 61100226. Yousra Aafer thanks Samsung Research Amer-
ica for supporting this project during her internship at Samsung.

9. REFERENCES
[1] Android compatibility.

http://source.android.com/compatibility/.
[2] Android revolution mobile device technologies.

http://android-revolution-hd.blogspot.com/p/android-
revolution-hd-mirror-site-var.html. Last Accessed: May 13,
2015.

[3] Samsung updates: Latest news and firmware for your samsung devices!
http://samsung-updates.com/. Accessed: 05/02/2013.

[4] Soot: A framework for analyzing and transforming java and android
applications. http://sable.github.io/soot/. Last Accessed: May
13, 2015.

[5] Dashboards. https:
//developer.android.com/about/dashboards/index.html,
2015. Accessed May 13, 2015.

[6] Hare hunting.
https://sites.google.com/site/androidharehunting/, May
2015.

[7] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel. Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android apps. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, New York, NY, USA, 2014.

[8] P. Brodley and leviathan Security Group. Zero Permission Android
Applications.
https://www.leviathansecurity.com/blog/zero-
permission-android-applications/. Accessed: 10/02/2013.

[9] J. Caballero, G. Grieco, M. Marron, and A. Nappa. Undangle: Early detection
of dangling pointers in use-after-free and double-free vulnerabilities. In
Proceedings of the 2012 International Symposium on Software Testing and
Analysis, ISSTA 2012. ACM, 2012.

[10] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-application
communication in android. In Proceedings of the 9th International Conference
on Mobile Systems, Applications, and Services, MobiSys ’11, New York, NY,
USA, 2011. ACM.

[11] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel. An empirical study of
cryptographic misuse in android applications. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security. ACM, 2013.

[12] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android permissions
demystified. In Proceedings of the 18th ACM conference on Computer and
communications security, CCS ’11, New York, NY, USA, 2011. ACM.

[13] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin. Permission
re-delegation: Attacks and defenses. In Proceedings of the 20th USENIX
Security Symposium, pages 22–37, 2011.

[14] C. Gibler, J. Crussell, J. Erickson, and H. Chen. AndroidLeaks: automatically
detecting potential privacy leaks in android applications on a large scale.
Springer, 2012.

[15] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic detection of capability
leaks in stock Android smartphones. In Proceedings of the 19th Network and
Distributed System Security Symposium (NDSS), Feb. 2012.

[16] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri. Code injection attacks on
html5-based mobile apps: Characterization, detection and mitigation. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’14, New York, NY, USA. ACM.

[17] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer. Android taint flow
analysis for app sets. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on the State of the Art in Java Program Analysis. ACM, 2014.

[18] L. Li, A. Bartel, J. Klein, Y. L. Traon, S. Arzt, S. Rasthofer, E. Bodden,
D. Octeau, and P. McDaniel. I know what leaked in your pocket: uncovering
privacy leaks on android apps with static taint analysis. arXiv preprint
arXiv:1404.7431, 2014.

[19] T. Li, X. Zhou, L. Xing, Y. Lee, M. Naveed, X. Wang, and X. Han. Mayhem in
the push clouds: Understanding and mitigating security hazards in mobile
push-messaging services. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’14, New York,
NY, USA, 2014. ACM.

[20] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. In PLDI, 2007.

[21] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and Y. Le Traon.
Effective inter-component communication mapping in android with epicc: An
essential step towards holistic security analysis. In Proceedings of the 22Nd
USENIX Conference on Security, SEC’13, pages 543–558, Berkeley, CA,
USA, 2013. USENIX Association.

[22] P. Ratazzi, Y. Aafer, A. Ahlawat, H. Hao, Y. Wang, and W. Du. A systematic
security evaluation of Android’s multi-user framework. In Mobile Security
Technologies (MoST) 2014, MoST’14, San Jose, CA, USA, May 17 2014.

[23] F. Wei, S. Roy, X. Ou, and Robby. Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of android
apps. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’14, New York, NY, USA, 2014. ACM.

[24] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang. The impact of vendor
customizations on android security. In Proceedings of the 2013 ACM SIGSAC
conference on Computer communications security, CCS ’13, pages 623–634,
New York, NY, USA, 2013. ACM.

[25] L. Xing, X. Pan, R. Wang, K. Yuan, and X. Wang. Upgrading your android,
elevating my malware: Privilege escalation through mobile os updating. In
Proceedings of the 2014 IEEE Symposium on Security and Privacy, SP ’14,
pages 393–408, Washington, DC, USA, 2014. IEEE Computer Society.

[26] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang. The peril of
fragmentation: Security hazards in android device driver customizations. In
2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA.

[27] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off of my market:
Detecting malicious apps in official and alternative Android markets. In
Proceedings of the 19th Annual Network & Distributed System Security
Symposium, Feb. 2012.

