DPV Chapter 9

Dealing with NP-Completeness

Jim Royer

April 17, 2019

Uncredited diagrams are from DPV or homemade.

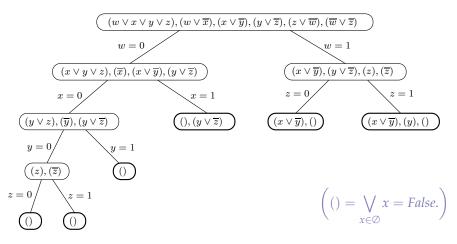
Jim Royer & Dealing with NP-Completeness

Jim Royer & Dealing with NP-Completeness

Backtracking = exhaustive search + pruning

Example: SAT via Backtracking

Let $\varphi = (w \lor x \lor y \lor z) \land (w \lor \overline{x}) \land (x \lor \overline{y}) \land (y \lor \overline{z}) \land (z \lor \overline{w}) \land (\overline{w} \lor \overline{z}).$



So the problem you want to solve is NP-Complete...

Now what?

- **X** Give up.
- **X** Burn cycles and try to solve it exactly.
- ✗ Try the first thing that comes into your head and hope it produces correct answers and is fast enough to get by.
- ✓ Open a different tool box. (Chapter 9 of DPV.)

Backtracking: The general scheme

First we need a fast test for subproblems such that

 $test(P) = \begin{cases} failure, & \text{if subproblem } P \text{ has no solution;} \\ success, & \text{if a solution to } P \text{ is found;} \\ uncertainty, & \text{otherwise.} \end{cases}$

Then:

```
Start with some problem P_0 S \leftarrow \{P_0\} // the set of active subproblems while (S \neq \emptyset) do Choose \ a \ P \in S; \ S \leftarrow S - \{P\} Expand \ P into subproblems P_1, \ldots, P_k for i \leftarrow 1 to k do case test(P_i) of success: announce solution and halt failure: discard P_i uncertainty: add P_i to S Announce that there is no solution.
```

For SAT:

- ightharpoonup Choose \equiv pick a clause
- ightharpoonup Expand \equiv pick a variable in the clause

Jim Royer ♦ Dealing with NP-Completeness 3 Jim Royer ♦ Dealing with NP-Completeness

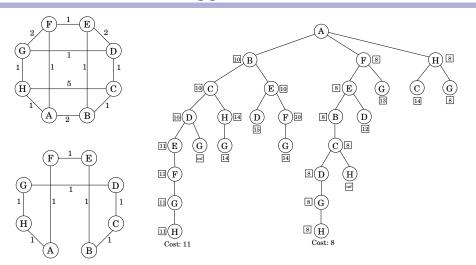
- ► B&B = the backtracking idea for optimization problems
- We consider minimization problems.
- First we need a fast way to compute *lower bounds* for the cost.
- ► Then:

```
Start with some problem P_0 S \leftarrow \set{P_0} /  the set of active subproblems bestSoFar \leftarrow \infty while (S \neq \emptyset) do Choose \ a \ P \in S; \ S \leftarrow S - \set{P} Expand \ P into subproblems P_1, \ldots, P_k for i \leftarrow 1 to k do if (P_i \text{ is a complete solution}) then update bestSoFar else if (lowerbound(P_i) < bestSoFar) then add P_i to S return bestSoFar
```

Jim Royer & Dealing with NP-Completeness

Jim Royer & Dealing with NP-Completeness

Branch-and-Bound Applied to TSP, 2



- ▶ 28 partial solutions examined.
- ightharpoonup 7! = 5,040 partial solutions in a brute-force search.

Branch-and-Bound Applied to TSP, 1

- ▶ G = (V, E) each $e \in E$ with length $d_e > 0$.
- ▶ Fix an $a \in V$.
- Partial solution: [a, S, b] = a path from a to b, S = the verts in this path
- ▶ Initial subproblem: $[a, \{a\}, a]$.
- ► Extension: $[a, S \cup \{x\}, x]$ where $x \in (V S)$ and $(b, x) \in E$.
- ightharpoonup lowerbound([a, S, b])
 - = a lower bound on the cost of completing the partial tour [a, S, b]
 - = the sum of:
 - + the cheapest edge from a to V S.
 - + the cheapest edge from b to V S.
 - + the cost of a minimum spanning tree of V S.
- ?? Why is this a lower bound on the cost of completing the partial tour [a, S, b]?

Approximation Algorithms

- ▶ Instead of seeking an optimum solution, try "close to optimum"
- The question is how close is good enough.
- ightharpoonup opt(I) = the value of an optimum solution for instance I.
- **Convention:** Assume opt(I) is always a positive integer.
- ► Convention: Focus on minimization problems.
- ▶ Suppose A(I) is the solution for I an algorithm A returns.
- ightharpoonup The approximation ratio for \mathcal{A} is

$$\alpha_{\mathcal{A}} = \max_{I} \frac{\mathcal{A}(I)}{Opt(I)} \geq 1.$$

For maximization problems, take:

$$\alpha_{\mathcal{A}} = \max_{I} \frac{Opt(I)}{\mathcal{A}(I)} \geq 1.$$

• (The closer α_A is to 1 the better.)

Recall from Chapter 5: Set Cover, 1

Suppose *B* is a set and $S_1, \ldots, S_m \subseteq B$.

Definition

- (a) A set cover of B is a $\{S'_1, \ldots, S'_k\} \subseteq \{S_1, \ldots, S_m\}$ with $B \subseteq \bigcup_{i=1}^k S'_i$
- (b) A minimal set cover of B is a set cover of B using as few of the S_i -sets as possible.

The Set Cover Problem (SCP)

Given: B and S_1, \ldots, S_m as above. **Find:** A minimal set cover of B.

Example

For: $B = \{1, ..., 14\}$ and

$$S_1 = \{1,2\}$$

$$S_2 = \{3,4,5,6\}$$

$$S_3 = \{7,8,9,10,11,12,13,14\}$$

$$S_4 = \{1,3,5,7,9,11,13\}$$

$$S_5 = \{2,4,6,8,10,12,14\}$$

the solution to SCP is $\{S_4, S_5\}$.

Jim Royer & Dealing with NP-Completeness

Recall from Chapter 5: Set Cover, 2

A Greedy Approximation to the Set Cover Problem

```
// Input: B and S_1, \ldots, S_m \subseteq B as above.
// Output: A set cover of B which is close to minimal.
\mathcal{C} \leftarrow \emptyset
while (some element of B is not yet covered) do
  Pick the S_i with the largest number of uncovered B-elements
  \mathcal{C} \leftarrow \mathcal{C} \cup \{S_i\}
return C
```

Example

$$B = \{1, ..., 14\}$$

$$S_1 = \{1, 2\}$$

$$S_2 = \{3, 4, 5, 6\}$$

$$S_3 = \{7, 8, 9, 10, 11, 12, 13, 14\}$$

$$S_4 = \{1, 3, 5, 7, 9, 11, 13\}$$

$$S_5 = \{2, 4, 6, 8, 10, 12, 14\}$$

On this, the algorithm returns $\{S_1, S_2, S_3\}.$

Jim Royer & Dealing with NP-Completeness

Recall from Chapter 5: Set Cover, 3

A Greedy Approx. to SCP

// Input: B and $S_1, \ldots, S_m \subseteq B$ // Output: A near min. set cover $\mathcal{C} \leftarrow \emptyset$

while (all of *B* is not covered) **do** Pick the S_i with the largest number of uncovered B-elms $\mathcal{C} \leftarrow \mathcal{C} \cup \{S_i\}$

return C

Claim

Suppose B contains *n* elements and the min. cover has k sets.

Then the greedy algorithm will use at most $k \log_a n$ sets.

Proof: Let

 n_t = the number of uncovered elms after *t*-many while loop iterations

So $n_0 = n$.

After iteration *t*:

- ightharpoonup there are n_t elms left.
- ▶ *k* many sets cover them
- ► So there must be some set with at least n_t/k many elements.
- So by the greedy choice,

$$n_{t+1} \le n_t - \frac{n_t}{k} = n_t \left(1 - \frac{1}{k} \right)$$
$$= n_0 \left(1 - \frac{1}{k} \right)^t.$$

Recall from Chapter 5: Set Cover, 4

A Greedy Approx. to SCP

// Input: B and $S_1, \ldots, S_m \subseteq B$ // Output: A near min. set cover $\mathcal{C} \leftarrow \emptyset$ **while** (all of *B* is not covered) **do**

Pick the S_i with the largest number of uncovered B-elms $\mathcal{C} \leftarrow \mathcal{C} \cup \{S_i\}$

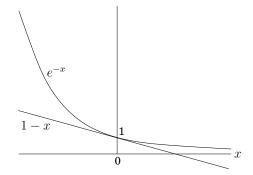
return C

Claim

Suppose B contains *n* elements and the min. cover has *k* sets. Then the greedy algorithm will use at most $k \log_a n$ sets.

Proof: Let n_t = the number of uncovered elms after *t*-many while loop iterations

We know: $n_{t+1} \leq n \left(1 - \frac{1}{k}\right)^{l}$. Fact: $1 - x < e^{-x}$ for all x, with equality iff x = 0.



A Greedy Approx. to SCP

// Input: B and $S_1, \ldots, S_m \subseteq B$ // Output: A near min. set cover $\mathcal{C} \leftarrow \emptyset$ while (all of B is not covered) do Pick the S_i with the largest number of uncovered B-elms $\mathcal{C} \leftarrow \mathcal{C} \cup \{S_i\}$ return \mathcal{C}

Claim

Suppose B contains n elements and the min. cover has k sets. **Then** the greedy algorithm will use at most $k \log_{n} n$ sets.

Proof: Let

 n_t = the number of uncovered elms after t-many while loop iterations

We know: $n_{t+1} \le n \left(1 - \frac{1}{k}\right)^t$. Fact: $1 - x \le e^{-x}$ for all x, with equality iff x = 0.

... At $t \ge k \log_e n$, $n_t < ne^{-\log_e n} = 1$, i.e., we must have covered all of B.

So the greedy algorithm is optimal within a $\log_e n$ factor.

That is,

$$\alpha_{\mathcal{A}} = \max_{I} \frac{\mathcal{A}(I)}{Opt(I)} \leq \log_{e} n.$$

Jim Royer & Dealing with NP-Completeness

Jim Royer & Dealing with NP-Completeness

14

Approximating Vertex Cover, 2

Definition

Suppose G = (V, E) an undirected graph.

- (a) A *matching* is an $M \subseteq E$ such that any two edges in M have no endpoints in common.
- (b) *M* is a *maximum matching* when for each $e \in (E M)$, $M \cup \{e\}$ fails to be a matching.

Observations

- ► Maximal matchings are easy to construct. (How?)
- **▶** Fix *G*.
- If *C* is a vertex cover and *M* is a maximum matching, then each $(u, v) \in M$ must have at least one of *u* and *v* in *C*. (Why?)
- . . (the size of a min. vertex cover for G) \geq (the size of a max. matching for G)
- ▶ If M is a maximal matching, then $S = \{u \mid u \text{ is an endpoint of an } e \in M\}$ is a vertex cover. (Why?)
- $|S| = 2|M| \ge \text{(the size of a min. vertex cover for } G) \ge |M|.$

Approximating Vertex Cover, 1

Vertex Cover (as an optimization problem)

Given: G = (V, E) an undirected graph **Find:** $S \subseteq V$ such that S touches every edge.

Goal: Minimize |S|.

- ▶ Vertex Cover is a special case of Set Cover.
- ▶ Therefore, it can be approximated within a $O(\log n)$ factor.
- ► *However*, it turns out we can do much better.

Approximating Vertex Cover, 3

An approximation algorithm for Vertex Cover

```
input G = (V, E)
Find a maximal matching M \subseteq E.
return S = \{u \mid u \text{ is an endpoint of an } e \in M\}
```

- ▶ By the Observations, the approximation ratio of this algorithm is $\alpha_A \leq 2$.
- ▶ In fact, you can find examples where the ratio is exactly 2.
- . The approximation ratio of *this* algorithm is $\alpha_A = 2$.
- ► What about other algorithms?

Amazing Fact (Dinur and Safra, 2005)

Minimum vertex cover cannot be approximated within a factor of 1.3606 for any sufficiently large vertex degree unless P=NP.

Definition

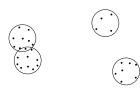
A *metric* on a space X is a function $d: X \times X \to \mathbb{R}^{\geq 0}$ such that, for all $x, y, z \in X$:

1.
$$d(x, y) \ge 0$$
.

$$2. \ d(x,y) = 0 \implies x = y.$$

3.
$$d(x,y) = d(y,x)$$
.

4.
$$d(x,y) \le d(x,z) + d(z,y)$$
.



data points/four clusters

k-Clustering

Input: Points $X = \{x_1, \dots, x_n\}$, metric d, integer k > 0.

Output: A partition of *X* into *k* clusters C_1, \ldots, C_k .

Goal: Minimize the diameter of the clusters: $\max_{j} \max_{x,x' \in C_i} d(x,x')$.

- ▶ *k*-Clustering is NP-complete.
- ► k-Clustering is important in lots of areas (e.g., data mining). See http://en.wikipedia.org/wiki/K-means_clustering

Jim Royer & Dealing with NP-Completeness

7

Traveling Salesman with metric distances, 1

Traveling Salesman Problem

Given: n vertices and all $n \cdot (n-1)/2$ -many distances between them. **Find:** An ordering of $1, \ldots, n$: $\pi(1), \pi(2), \ldots, \pi(n)$ so that the tour's cost $d(\pi(1), \pi(2)) + d(\pi(2), \pi(3)) + \cdots + d(\pi(n), \pi(1))$ is minimal.

Question: Suppose we require the distances to come from a metric. Does this help make the problem easier? Answer: Yes!

Definition (Repeated)

A *metric* on a space X is a function $d: X \times X \to \mathbb{R}^{\geq 0}$ such that, for all $x, y, z \in X$:

1.
$$d(x,y) \ge 0$$
.

3.
$$d(x,y) = d(y,x)$$
.

2.
$$d(x,y) = 0 \implies x = y$$
.

4.
$$d(x,y) \le d(x,z) + d(z,y)$$
.

Clustering, 2

```
Approximation Algorithm for k-Clustering
```

```
Pick any point p_1 \in X to start for i \leftarrow 2 to k do p_i \leftarrow \text{a point in } X \text{ that is farthest away from } p_1, \ldots, p_{i-1} \\ // \text{ l.e., } p_i \text{ maximizes: } \min \{ d(\cdot, p_j) \ : \ j = 1, \ldots, i-1 \}  Create k clusters: C_i = \{ x \in X \ : \ p_i \text{ is the closest center} \}
```

Claim: For the above algorithm, $\alpha_A \leq 2$. *Proof:*

- Let x be the point farthest from p_1, \ldots, p_k .
- Let r = the distance of x to the nearest p_i .
- :. Every point must be within *r* from its cluster center.
- ... The diameter of the clusters is $\leq 2r$.

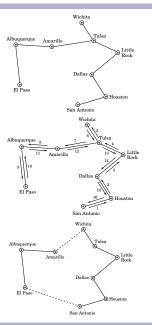
- The points $p_1, ..., p_k$ and x are all > r distant from one another.
- Any partition of X into k cluster must put two of p_1, \ldots, p_k, x into the same cluster. (By the PHP.)
- These clusters must have diameter $\geq r$. QED

Jim Royer & Dealing with NP-Completeness

19

Traveling Salesman with metric distances, 2

- ► Take a TSP path and delete an edge. The result is a spanning tree.
- . . (cost of a MST for *G*) < (cost of a solutions to TSP for *G*)
- Now take *T*, a MST for *G*.Turn *T* into a tour that uses each edge twice.
- Let c_1, \ldots, c_n be the cities on the tour in the order they are first visited.
- Edit the tour so that from city c_i the tour shortcuts to city c_{i+1} and from city c_n it shortcuts to city c_1 .
- ▶ By the triangle inequality, the shortcuts can keep the cost the same or improve it.
- . (cost of a solutions to TSP for G) $< 2 \times (cost of a MST for <math>G)$
- .*. We can approximate the metric version of TSP within a factor of 2.



RECALL: Rudrata/Hamiltonian Cycle ≤ TSP

Rudrata/Hamiltonian Cycle Problem

Given: G = (V, E), an undirected graph.

Find: A simple cycle that visits each vertex of *G*.

Traveling Salesman Problem (TSP)

Given: V', n vertices; all $\frac{n \cdot (n-1)}{2}$ -many distances between them; and b, a budget **Find:** π , an ordering of $1, \ldots, n$, such that $\sum_{i=1}^{n} d_{\pi(i), \pi(1+(i \mod n))} \leq b$.

Construction of I(G,C).

Given
$$G = (V, E)$$
 and $C \ge 1$, define

$$V' = V$$

$$d_{i,j} = \begin{cases} 1, & \text{if } (i,j) \in E; \\ 1+C, & \text{otherwise.} \end{cases}$$

$$b = |V|$$

Claim: (V, E) has a R/H cycle \iff (V',d) has tour of cost $\leq b$. If $C \gg 1$:

► Gap: either a solution of cost *n*, or solutions with costs $\geq n + C$, but none inbetween.

... An approx. solution to (the full) TSP would let us solve Ham. Cycle in polytime! **How?** (See next page.)

Jim Royer & Dealing with NP-Completeness

Jim Royer & Dealing with NP-Completeness

Approximating Knapsack, 1

Knapsack without repetition

Given:

> A knapsack with capacity W.

➤ Items 1, . . . , *n*

 \rightarrow Item *i* has weight w_i & value v_i .

Find: a set $M \subseteq \{1, ..., n\} \ni$

 $> \sum_{i \in M} w_i \leq W$ and

 $> \sum_{i \in M} v_i$ is maximized.

- ▶ By Chapter 6, there is a dynamic programming solution to Knapsack that runs in $O(n \cdot W) = O(n \cdot 2^{|W|})$ time.
- ▶ There is a similar dynamic programming solution to Knapsack that runs in $O(n \cdot V) = O(n \cdot 2^{|V|})$ time, where $V = \sum_{i=1}^{n} v_i$.
- \blacktriangleright We use the $O(n \cdot V)$ version as the basis for an approximation algorithm.

Approximating General TSP

Claim

An approximate solution to TSP would give us polytime solution of Rudrata Path.

Proof

- \triangleright Suppose that we had \mathcal{A} , a polytime approximation algorithm for TSP with approximation factor α_A .
- Suppose G is any instance of Rudrata Path.
- Construct I(G,C) where $C = \alpha_A \cdot n$ and run \mathcal{A} on it.
- ▶ If *G* has a Rudrata path, then OPT(I(G,C)) = n and \mathcal{A} finds a TSP tour of cost $\alpha_{\mathcal{A}} \cdot OPT(I(G, C)) = \alpha_{\mathcal{A}} \cdot n$.
- ▶ If *G* has no Rudrata path, then A must return a tour of cost > $\alpha_A \cdot n$.
- \triangleright Since \mathcal{A} is supposed to run in polytime, this means we can decide Rudrata path in polytime!!!!

Corollary

- ▶ *If TSP has a polytime approximation algorithm, then P=NP.*
- ► If $P \neq NP$, then TSP has no polytime approximation algorithm.

Approximating Knapsack, 2

```
function ksApprox(\vec{v}, \vec{w}, W, \epsilon) // \epsilon = an approximation factor
   // Assume each w_i \leq W.
   v_{\max} \leftarrow \max\{v_i : i = 1, \ldots, n\}.
   for i = 1, ..., n do \hat{v}_i \leftarrow \left| \frac{v_i \cdot n}{v_{\text{max}} \cdot \epsilon} \right|
                                                            // Rescale the values
   Run the dynamic programming algorithm using the \hat{v}_i values.
```

Runtime Analysis

► Since each $\hat{v}_i < n/\epsilon$, we have $\hat{v}_1 + \cdots + \hat{v}_n < n^2/\epsilon$.

return the resulting choices of items

▶ So the DP algorithm runs in $O(n^3/\epsilon)$ time.

Jim Royer & Dealing with NP-Completeness Jim Royer & Dealing with NP-Completeness

Approximating Knapsack, 3

$$\begin{array}{ll} \textbf{function} \ \mathsf{ksApprox}(\vec{v}, \vec{w}, W, \epsilon) & // \ \epsilon = \mathsf{an approximation factor} \\ // \ \mathsf{Assume each} \ w_i \leq W. \\ v_{\mathsf{max}} \leftarrow \mathsf{max} \{ v_i : i = 1, \dots, n \}. \\ \\ \textbf{for} \ i = 1, \dots, n \ \textbf{do} \ \hat{v}_i \leftarrow \left\lfloor \frac{v_i \cdot n}{v_{\mathsf{max}} \cdot \epsilon} \right\rfloor. & // \ \mathsf{Rescale the values} \\ \\ \mathsf{Run} \ \mathsf{the dynamic programming algorithm using the} \ \hat{v}_i \ \mathsf{values}. \\ \\ \textbf{return the resulting choices of items} \end{array}$$

Approximation Analysis Suppose:

- \triangleright *S* is an optimal solution to the original problem with total value K^* .
- \hat{S} is the solution produces for the scaled problem.

$$\sum_{i \in S} \hat{v}_i = \sum_{i \in S} \left\lfloor \frac{v_i \cdot n}{v_{\max} \cdot \epsilon} \right\rfloor \ge \sum_{i \in S} \left(\frac{v_i \cdot n}{v_{\max} \cdot \epsilon} - 1 \right) = K^* \cdot \frac{n}{v_{\max} \cdot \epsilon} - n.$$

So, the value of
$$\hat{S}$$
 is at least $K^* \cdot \frac{n}{v_{\text{max}} \cdot \epsilon} - n$. Hence,

Correction: The boxed part is what I missed in class.

$$\sum_{i \in \hat{S}} v_i \ge \frac{v_{\max} \cdot \epsilon}{n} \sum_{i \in \hat{S}} \hat{v}_i \ge \frac{v_{\max} \cdot \epsilon}{n} \left(K^* \cdot \frac{n}{v_{\max} \cdot \epsilon} - n \right) = K^* - v_{\max} \cdot \epsilon \ge K^* (1 - \epsilon).$$

Jim Royer & Dealing with NP-Completeness

Jim Royer & Dealing with NP-Completeness

Local search heuristics: The general scheme

 $s \leftarrow$ any initial solution while there is a solution s' in the neighborhood of s with cost(s') < cost(s) do $s \leftarrow s'$ return s

For any application of this scheme to a particular problem, the key question *what is a good notion of neighborhood?*

The approximability hierarchy

- ❖ No finite approximation ratio is possible. E.g., TSP.
- ❖ An approximation ratio of about log *n* is possible. E.g., Set Cover.
- A constant approximation ratio is possible, but there are limits to how small this can be. E.g., Vertex Cover, k-Clustering, and metric TSP. The proofs of these lower limit results are really hard!!!
- A constant approximation ratio is possible, and in fact you can make α_A arbitrarily close to 1. E.g., Knapsack.

NOTE: All of the above assumes $P \neq NP$.

❖ If P=NP, all the problems can be solved exactly in polytime.

Local search heuristics: Traveling Salesman, 1

- Assume we have a complete graph on *n* vertices (with a cost assigned to each edge).
- ▶ So there are (n-1)! many tours.
- ► Two tours differ by at least two edges. (Why?)
- ► So let us try:

Tours T_1 and T_2 are neighbors when they differ by two edges.

- ▶ With this choice of "neighbor":
 - 1. What is the overall running time?
 - 2. Does this always return an optimal answer?
- Answers:
 - 1. Hard to say.
 - Of course not.

Jim Royer ♦ Dealing with NP-Completeness 27 Jim Royer ♦ Dealing with NP-Completeness

Local search heuristics: Traveling Salesman, 2

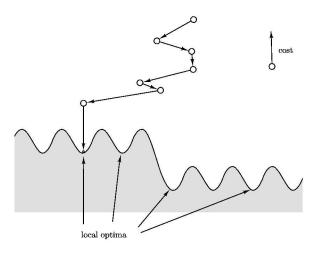
▶ Tours T_1 and T_2 are neighbors when they differ by two edges.

- ► With this choice of "neighbor": What is the overall running time?
 - Each tour has $O(n^2)$ neighbors, so making the choice is not too expensive.
 - But, the algorithm may well go through exponentially many iterations.

Jim Royer & Dealing with NP-Completeness

20

Local search heuristics: Optima, Local vs. global



Local search heuristics: Traveling Salesman, 3

ightharpoonup Tours T_1 and T_2 are neighbors when they differ by two edges.

► With this choice of "neighbor":

Does this always return an optimal answer?

- The final answer will be *locally optimal*, but not necessarily optimal.
- The problem is that this notion of neighbor is too myopic. E.g.,

▶ If we allow three-edge changes, then:

but then a tour has $O(n^3)$ neighbors and the choice part of the algorithm slows down.

Jim Royer & Dealing with NP-Completeness

20

Local search: Graph partitioning, 1

Graph partitioning

Given: G = (V, E), an undirected graph with nonnegative edge wghts, and $\alpha \in (0, 1/2]$. **Return:** A partition of V into A and B with

$$|A|, |B| \geq \alpha |V|.$$

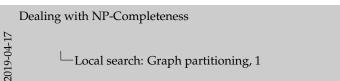
Goal: Minimize the capacity of the (A, B)-cut.

Note: The general problem is reducible to the special case of $\alpha = 1/2$.

Strategy:

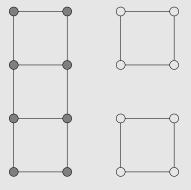
- ▶ Start with a partition with |A| = |B|.
- ▶ Neighbors of (A, B) =

$$\{(A - \{a\} + \{b\}, B - \{b\} + \{a\}) : a \in A, b \in B\}.$$



 $\{\; (A-\{a\}+\{b\},B-\{b\}+\{a\})\;:\; a\in A,b\in B\;\!\}.$

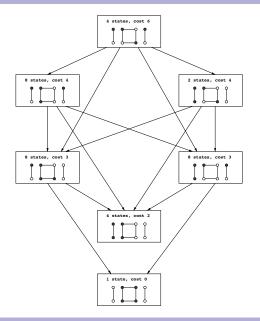
Local search: Graph partitioning, 1



- A = gray verts, B = white verts.
- Weights 0 and 1
- Optimal partition as cost 0.

Local search: Graph partitioning, 3

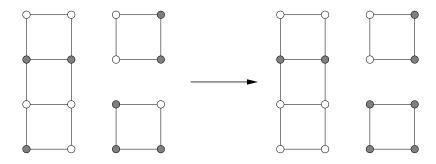
► The problem with this notion of neighbor is that there are stubborn local minima.



Local search: Graph partitioning, 2

- Start with a partition with |A| = |B|.
- ightharpoonup Neighbors of (A, B) =

$$\{(A - \{a\} + \{b\}, B - \{b\} + \{a\}) : a \in A, b \in B\}.$$

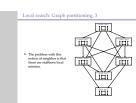


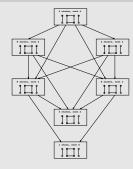
Jim Royer & Dealing with NP-Completeness

Dealing with NP-Completeness

2019-04-17

Local search: Graph partitioning, 3





- Search space for a graph with 8 nodes.
- Then entire space has 35 solutions, but the picture has grouped these into seven groups to cut the clutter.
- There are five local optima.

Jim Royer & Dealing with NP-Completeness

Dealing with local optima: Randomized Restarts

```
L \leftarrow an empty list s \leftarrow a randomly chosen initial solution s \leftarrow a randomly chosen initial solution s \leftarrow a while s \leftarrow a solution s \leftarrow a in the neighborhood of s \leftarrow a with cost(s') < cost(s) do s \leftarrow s' add s \leftarrow a to s \leftarrow a definition in s \leftarrow a solution in s \leftarrow a definition in s \leftarrow a definition s \leftarrow a solution in s \leftarrow a definition s \leftarrow a
```

This can shake free of bad local optima.

Dealing with local optima: Simulated Annealing

```
s \leftarrow a randomly chosen initial solution  \begin{array}{l} \textbf{repeat} \\ s' \leftarrow \textbf{a} \text{ randomly chosen solution in the neighborhood of } s \\ \Delta \leftarrow cost(s') - cost(s) \\ \textbf{if } (\Delta < 0) \textbf{ then } s \leftarrow s' \\ \textbf{else with probability } e^{-\Delta/T} \textbf{ do } s \leftarrow s' \\ \textbf{until we decide we are done} \\ \end{array}
```

- $ightharpoonup T \equiv \text{temperature}$
- ▶ If $T \approx 0$ this is roughly the previous scheme.
- ► If *T* is big, then *s* jumps around a lot.
- ► We vary *T*, initially large (hot), and gradually small (cooler).

