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So the problem you want to solve is NP-Complete. . .

Now what?
8 Give up.
8 Burn cycles and try to solve it exactly.
8 Try the first thing that comes into your head and hope it produces

correct answers and is fast enough to get by.
4 Open a different tool box. (Chapter 9 of DPV.)
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Backtracking = exhaustive search + pruning

Example: SAT via Backtracking
Let ϕ = (w∨ x∨ y∨ z) ∧ (w∨ x) ∧ (x∨ y) ∧ (y∨ z) ∧ (z∨w) ∧ (w∨ z).

286 Algorithms

Figure 9.1 Backtracking reveals that φ is not satisfiable.
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happens to be a singleton, then at least one of the resulting branches will be terminated. (If
there is a tie in choosing subproblems, one reasonable policy is to pick the one lowest in the
tree, in the hope that it is close to a satisfying assignment.) See Figure 9.1 for the conclusion
of our earlier example.
More abstractly, a backtracking algorithm requires a test that looks at a subproblem and

quickly declares one of three outcomes:

1. Failure: the subproblem has no solution.

2. Success: a solution to the subproblem is found.

3. Uncertainty.

In the case of SAT, this test declares failure if there is an empty clause, success if there are
no clauses, and uncertainty otherwise. The backtracking procedure then has the following
format.

Start with some problem P0

Let S = {P0}, the set of active subproblems

Repeat while S is nonempty:

choose a subproblem P ∈ S and remove it from S
expand it into smaller subproblems P1, P2, . . . , Pk

For each Pi:

If test(Pi) succeeds: halt and announce this solution

If test(Pi) fails: discard Pi

(
() =

∨

x∈∅

x = False.
)
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Backtracking: The general scheme

First we need a fast test for subproblems such that

test(P) =





failure, if subproblem P has no solution;
success, if a solution to P is found;
uncertainty, otherwise.

Then:

Start with some problem P0
S← {P0 } // the set of active subproblems
while (S 6= ∅) do

Choose a P ∈ S; S← S− {P }
Expand P into subproblems P1, . . . , Pk
for i← 1 to k do

case test(Pi) of
success: announce solution and halt
failure: discard Pi
uncertainty: add Pi to S

Announce that there is no solution.

For SAT:
I Choose ≡ pick a clause
I Expand ≡ pick a

variable in the clause
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Branch-and-Bound

I B&B = the backtracking idea for optimization problems
I We consider minimization problems.
I First we need a fast way to compute lower bounds for the cost.
I Then:

Start with some problem P0
S← {P0 } // the set of active subproblems
bestSoFar← ∞
while (S 6= ∅) do

Choose a P ∈ S; S← S− {P }
Expand P into subproblems P1, . . . , Pk
for i← 1 to k do

if (Pi is a complete solution) then update bestSoFar
else if (lowerbound(Pi) < bestSoFar) then add Pi to S

return bestSoFar
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Branch-and-Bound Applied to TSP, 1

I G = (V, E) each e ∈ E with length de > 0.
I Fix an a ∈ V.
I Partial solution: [a, S, b] = a path from a to b, S = the verts in this path
I Initial subproblem: [a, { a }, a].
I Extension: [a, S∪ { x }, x] where x ∈ (V− S) and (b, x) ∈ E.
I lowerbound([a, S, b])

= a lower bound on the cost of completing the partial tour [a, S, b]
= the sum of:
+ the cheapest edge from a to V− S.
+ the cheapest edge from b to V− S.
+ the cost of a minimum spanning tree of V− S.

?? Why is this a lower bound on the cost of completing the partial tour
[a, S, b]?
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Branch-and-Bound Applied to TSP, 2
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Figure 9.2 (a) A graph and its optimal traveling salesman tour. (b) The branch-and-bound
search tree, explored left to right. Boxed numbers indicate lower bounds on cost.
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I 28 partial solutions examined.
I 7! = 5, 040 partial solutions in a brute-force search.
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Approximation Algorithms

I Instead of seeking an optimum solution, try “close to optimum”
I The question is how close is good enough.
I opt(I) = the value of an optimum solution for instance I.
I Convention: Assume opt(I) is always a positive integer.
I Convention: Focus on minimization problems.
I Suppose A(I) is the solution for I an algorithm A returns.
I The approximation ratio for A is

αA = max
I

A(I)
Opt(I)

≥ 1.

I For maximization problems, take:

αA = max
I

Opt(I)
A(I) ≥ 1.

I (The closer αA is to 1 the better.)
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Recall from Chapter 5: Set Cover, 1

Suppose B is a set and S1, . . . , Sm ⊆ B.

Definition
(a) A set cover of B is a { S′1, . . . , S′k } ⊆ { S1, . . . , Sm } with B ⊆ ∪k

i=1S′i
(b) A minimal set cover of B is a set cover of B using as few of the Si-sets as

possible.

The Set Cover Problem (SCP)
Given: B and S1, . . . , Sm as above.
Find: A minimal set cover of B.

Example
For: B = { 1, . . . , 14 } and

S1 = { 1, 2 }
S2 = { 3, 4, 5, 6 }
S3 = { 7, 8, 9, 10, 11, 12, 13, 14 }
S4 = { 1, 3, 5, 7, 9, 11, 13 }
S5 = { 2, 4, 6, 8, 10, 12, 14 }

the solution to SCP is { S4, S5 }.
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Recall from Chapter 5: Set Cover, 2

A Greedy Approximation to the Set Cover Problem

// Input: B and S1, . . . , Sm ⊆ B as above.
// Output: A set cover of B which is close to minimal.
C ← ∅
while (some element of B is not yet covered) do

Pick the Si with the largest number of uncovered B-elements
C ← C ∪ { Si }

return C

Example

B = { 1, . . . , 14 }
S1 = { 1, 2 }
S2 = { 3, 4, 5, 6 }
S3 = { 7, 8, 9, 10, 11, 12, 13, 14 }
S4 = { 1, 3, 5, 7, 9, 11, 13 }
S5 = { 2, 4, 6, 8, 10, 12, 14 }

On this, the algorithm returns
{ S1, S2, S3 }.
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Recall from Chapter 5: Set Cover, 3

A Greedy Approx. to SCP

// Input: B and S1, . . . , Sm ⊆ B
// Output: A near min. set cover
C ← ∅
while (all of B is not covered) do

Pick the Si with the largest
number of uncovered B-elms
C ← C ∪ { Si }

return C

Claim
Suppose B contains n elements
and the min. cover has k sets.

Then the greedy algorithm will
use at most k loge n sets.

Proof: Let
nt = the number of uncovered

elms after t-many while
loop iterations

So n0 = n.
After iteration t:
I there are nt elms left.
I k many sets cover them
I So there must be some set with at

least nt/k many elements.
I So by the greedy choice,

nt+1 ≤ nt −
nt

k
= nt

(
1− 1

k

)

= n0

(
1− 1

k

)t
.
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Recall from Chapter 5: Set Cover, 4

A Greedy Approx. to SCP

// Input: B and S1, . . . , Sm ⊆ B
// Output: A near min. set cover
C ← ∅
while (all of B is not covered) do

Pick the Si with the largest
number of uncovered B-elms
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return C

Claim
Suppose B contains n elements
and the min. cover has k sets.
Then the greedy algorithm will
use at most k loge n sets.

Proof: Let
nt = the number of uncovered

elms after t-many while
loop iterations

We know: nt+1 ≤ n
(

1− 1
k

)t
.

Fact: 1− x ≤ e−x for all x,
with equality iff x = 0.

160 Algorithms

which is most easily proved by a picture:

x0

11 − x

e−x

Thus
nt ≤ n0

(
1 − 1

k

)t

< n0(e
−1/k)t = ne−t/k.

At t = k ln n, therefore, nt is strictly less than ne− lnn = 1, which means no elements remain to
be covered.

The ratio between the greedy algorithm’s solution and the optimal solution varies from
input to input but is always less than ln n. And there are certain inputs for which the ratio is
very close to ln n (Exercise 5.33). We call this maximum ratio the approximation factor of the
greedy algorithm. There seems to be a lot of room for improvement, but in fact such hopes are
unjustified: it turns out that under certain widely-held complexity assumptions (which will
be clearer when we reach Chapter 8), there is provably no polynomial-time algorithm with a
smaller approximation factor.
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Recall from Chapter 5: Set Cover, 5

A Greedy Approx. to SCP

// Input: B and S1, . . . , Sm ⊆ B
// Output: A near min. set cover
C ← ∅
while (all of B is not covered) do

Pick the Si with the largest
number of uncovered B-elms
C ← C ∪ { Si }

return C

Claim
Suppose B contains n elements
and the min. cover has k sets.
Then the greedy algorithm will
use at most k loge n sets.

Proof: Let
nt = the number of uncovered

elms after t-many while
loop iterations

We know: nt+1 ≤ n
(

1− 1
k

)t
.

Fact: 1− x ≤ e−x for all x,
with equality iff x = 0.

∴ At t ≥ k loge n, nt < ne− loge n = 1,
i.e., we must have covered all of B.

So the greedy algorithm is optimal
within a loge n factor.

That is,

αA = max
I

A(I)
Opt(I)

≤ loge n.
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Approximating Vertex Cover, 1

Vertex Cover (as an optimization problem)
Given: G = (V, E) an undirected graph
Find: S ⊆ V such that S touches every edge.
Goal: Minimize |S|.
I Vertex Cover is a special case of Set Cover.
I Therefore, it can be approximated within a O(log n) factor.
I However, it turns out we can do much better.
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Approximating Vertex Cover, 2

Definition
Suppose G = (V, E) an undirected graph.

(a) A matching is an M ⊆ E such that any two edges in M have no endpoints in
common.

(b) M is a maximum matching when for each e ∈ (E−M), M∪ { e } fails to be a
matching.

Observations
I Maximal matchings are easy to construct. (How?)
I Fix G.
I If C is a vertex cover and M is a maximum matching,

then each (u, v) ∈ M must have at least one of u and v in C. (Why?)

∴ (the size of a min. vertex cover for G) ≥ (the size of a max. matching for G)
I If M is a maximal matching,

then S = { u u is an endpoint of an e ∈ M } is a vertex cover. (Why?)

∴ |S| = 2|M| ≥ (the size of a min. vertex cover for G) ≥ |M|.
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Approximating Vertex Cover, 3

An approximation algorithm for Vertex Cover

input G = (V, E)
Find a maximal matching M ⊆ E.
return S = { u u is an endpoint of an e ∈ M }

I By the Observations, the approximation ratio of this algorithm is αA ≤ 2.
I In fact, you can find examples where the ratio is exactly 2.

∴ The approximation ratio of this algorithm is αA = 2.
I What about other algorithms?

Amazing Fact (Dinur and Safra, 2005)
Minimum vertex cover cannot be approximated within a factor of 1.3606 for
any sufficiently large vertex degree unless P=NP.
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Clustering, 1

Definition
A metric on a space X is a function d : X×X→ R≥0

such that, for all x, y, z ∈ X:

1. d(x, y) ≥ 0.

2. d(x, y) = 0 =⇒ x = y.

3. d(x, y) = d(y, x).

4. d(x, y) ≤ d(x, z) + d(z, y).
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Figure 9.5 Some data points and the optimal k = 4 clusters.

Figure 9.6 (a) Four centers chosen by farthest-first traversal. (b) The resulting clusters.
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the center closest to it, thus creating k clusters. The centers are picked one at a time, using
an intuitive rule: always pick the next center to be as far as possible from the centers chosen
so far (see Figure 9.6).

Pick any point µ1 ∈ X as the first cluster center

for i = 2 to k:
Let µi be the point in X that is farthest from µ1, . . . , µi−1

(i.e., that maximizes minj<i d(·, µj))
Create k clusters: Ci = {all x ∈ X whose closest center is µi}

It’s clear that this algorithm returns a valid partition. What’s more, the resulting diameter is
guaranteed to be at most twice optimal.
Here’s the argument. Let x ∈ X be the point farthest from µ1, . . . , µk (in other words the

next center we would have chosen, if we wanted k + 1 of them), and let r be its distance to its
closest center. Then every point in X must be within distance r of its cluster center. By the
triangle inequality, this means that every cluster has diameter at most 2r.
But how does r relate to the diameter of the optimal clustering? Well, we have identified

k + 1 points {µ1, µ2, . . . , µk, x} that are all at a distance at least r from each other (why?). Any
partition into k clusters must put two of these points in the same cluster and must therefore

data points/four clusters

k-Clustering
Input: Points X = { x1, . . . , xn }, metric d, integer k > 0.
Output: A partition of X into k clusters C1, . . . , Ck.
Goal: Minimize the diameter of the clusters: max

j
max

x,x′∈Cj
d(x, x′).

I k-Clustering is NP-complete.
I k-Clustering is important in lots of areas (e.g., data mining).

See http://en.wikipedia.org/wiki/K-means_clustering
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Clustering, 2

Approximation Algorithm for k-Clustering

Pick any point p1 ∈ X to start
for i← 2 to k do

pi ← a point in X that is farthest away from p1, . . . , pi−1
// I.e., pi maximizes: min{ d(·, pj) : j = 1, . . . , i− 1 }

Create k clusters: Ci = { x ∈ X : pi is the closest center }

Claim: For the above algorithm, αA ≤ 2.
Proof:

I Let x be the point farthest from
p1, . . . , pk.

I Let r = the distance of x to the
nearest pi.

∴ Every point must be within r from
its cluster center.

∴ The diameter of the clusters is ≤ 2r.

I The points p1, . . . , pk and x are all
≥ r distant from one another.

I Any partition of X into k cluster
must put two of p1, . . . , pk, x into
the same cluster. (By the PHP.)

∴ These clusters must have diameter
≥ r. QED
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Traveling Salesman with metric distances, 1

Traveling Salesman Problem
Given: n vertices and all n · (n− 1)/2-many distances between them.
Find: An ordering of 1, . . . , n: π(1), π(2), . . . , π(n) so that the tour’s cost
d(π(1), π(2)) + d(π(2), π(3)) + · · ·+ d(π(n), π(1)) is minimal.

Question: Suppose we require the distances to come from a metric. Does
this help make the problem easier? Answer: Yes!

Definition (Repeated)
A metric on a space X is a function d : X×X→ R≥0 such that, for all
x, y, z ∈ X:

1. d(x, y) ≥ 0.
2. d(x, y) = 0 =⇒ x = y.

3. d(x, y) = d(y, x).
4. d(x, y) ≤ d(x, z) + d(z, y).
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Traveling Salesman with metric distances, 2

I Take a TSP path and delete an edge.
The result is a spanning tree.

∴ (cost of a MST for G)
< (cost of a solutions to TSP for G)

I Now take T, a MST for G.
Turn T into a tour that uses each edge twice.

I Let c1, . . . , cn be the cities on the tour —
in the order they are first visited.

I Edit the tour so that from city ci the tour
shortcuts to city ci+1 and from city cn it
shortcuts to city c1.

I By the triangle inequality, the shortcuts can
keep the cost the same or improve it.

∴ (cost of a solutions to TSP for G)
< 2× (cost of a MST for G)

∴ We can approximate the metric version of
TSP within a factor of 2.
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have diameter at least r.

This algorithm has a certain high-level similarity to our scheme for VERTEX COVER. In-
stead of a maximal matching, we use a different easily computable structure—a set of k points
that cover all of X within some radius r, while at the same time being mutually separated
by a distance of at least r. This structure is used both to generate a clustering and to give a
lower bound on the optimal clustering.
We know of no better approximation algorithm for this problem.

9.2.3 TSP
The triangle inequality played a crucial role in making the k-CLUSTER problem approximable.
It also helps with the TRAVELING SALESMAN PROBLEM: if the distances between cities satisfy
the metric properties, then there is an algorithm that outputs a tour of length at most 1.5
times optimal. We’ll now look at a slightly weaker result that achieves a factor of 2.
Continuing with the thought processes of our previous two approximation algorithms, we

can ask whether there is some structure that is easy to compute and that is plausibly related
to the best traveling salesman tour (as well as providing a good lower bound on OPT). A little
thought and experimentation reveals the answer to be the minimum spanning tree.
Let’s understand this relation. Removing any edge from a traveling salesman tour leaves

a path through all the vertices, which is a spanning tree. Therefore,
TSP cost ≥ cost of this path ≥ MST cost.

Now, we somehow need to use the MST to build a traveling salesman tour. If we can use each
edge twice, then by following the shape of the MST we end up with a tour that visits all the
cities, some of them more than once. Here’s an example, with the MST on the left and the
resulting tour on the right (the numbers show the order in which the edges are taken).

TulsaAlbuquerque Amarillo
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San Antonio
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1
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6

4

13
14

3

15
16

Therefore, this tour has a length at most twice the MST cost, which as we’ve already seen is
at most twice the TSP cost.
This is the result we wanted, but we aren’t quite done because our tour visits some cities

multiple times and is therefore not legal. To fix the problem, the tour should simply skip any
city it is about to revisit, and instead move directly to the next new city in its list:
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By the triangle inequality, these bypasses can only make the overall tour shorter.

General TSP
But what if we are interested in instances of TSP that do not satisfy the triangle inequality?
It turns out that this is a much harder problem to approximate.
Here is why: Recall that on page 274 we gave a polynomial-time reduction which given

any graph G and integer any C > 0 produces an instance I(G,C) of the TSP such that:

(i) If G has a Rudrata path, then OPT(I(G,C)) = n, the number of vertices in G.

(ii) If G has no Rudrata path, then OPT(I(G,C)) ≥ n + C.

This means that even an approximate solution to TSP would enable us to solve RUDRATA
PATH! Let’s work out the details.
Consider an approximation algorithmA for TSP and let αA denote its approximation ratio.

From any instance G of RUDRATA PATH, we will create an instance I(G,C) of TSP using the
specific constant C = nαA. What happens when algorithm A is run on this TSP instance? In
case (i), it must output a tour of length at most αAOPT(I(G,C)) = nαA, whereas in case (ii) it
must output a tour of length at least OPT(I(G,C)) > nαA. Thus we can figure out whether G
has a Rudrata path! Here is the resulting procedure:

Given any graph G:
compute I(G,C) (with C = n · αA) and run algorithm A on it

if the resulting tour has length ≤ nαA:
conclude that G has a Rudrata path

else: conclude that G has no Rudrata path

This tells us whether or not G has a Rudrata path; by calling the procedure a polynomial
number of times, we can find the actual path (Exercise 8.2).
We’ve shown that if TSP has a polynomial-time approximation algorithm, then there is

a polynomial algorithm for the NP-complete RUDRATA PATH problem. So, unless P = NP,
there cannot exist an efficient approximation algorithm for the TSP.
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RECALL: Rudrata/Hamiltonian Cycle E TSP

Rudrata/Hamiltonian Cycle Problem
Given: G = (V, E), an undirected graph.
Find: A simple cycle that visits each vertex of G.

Traveling Salesman Problem (TSP)
Given: V′, n vertices; all n·(n−1)

2 -many distances between them; and b, a budget
Find: π, an ordering of 1, . . . , n, such that ∑n

i=1 dπ(i),π(1+(i mod n)) ≤ b.

Construction of I(G, C).
Given G = (V, E) and C ≥ 1, define

V′ = V

di,j =

{
1, if (i, j) ∈ E;
1 + C, otherwise.

b = |V|

Claim: (V, E) has a R/H cycle
⇐⇒ (V′, d) has tour of cost ≤ b.

If C� 1:
I Gap: either a solution of cost n,

or solutions with costs ≥ n + C,
but none inbetween.

∴ An approx. solution to (the full) TSP would let us solve Ham. Cycle in polytime!
How? (See next page.)

Jim Royer v Dealing with NP-Completeness 21

Approximating General TSP

Claim
An approximate solution to TSP would give us polytime solution of
Rudrata Path.

Proof
I Suppose that we had A, a polytime approximation algorithm for TSP

with approximation factor αA.
I Suppose G is any instance of Rudrata Path.
I Construct I(G, C) where C = αA · n and run A on it.
I If G has a Rudrata path, then OPT(I(G, C)) = n and
A finds a TSP tour of cost αA ·OPT(I(G, C)) = αA · n.

I If G has no Rudrata path, then Amust return a tour of cost > αA · n.
I Since A is supposed to run in polytime,

this means we can decide Rudrata path in polytime!!!!

Corollary
I If TSP has a polytime approximation algorithm, then P=NP.
I If P 6=NP, then TSP has no polytime approximation algorithm.
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Approximating Knapsack, 1

Knapsack without repetition
Given:

ã A knapsack with capacity W.
ã Items 1, . . . , n
ã Item i has weight wi & value vi.

Find: a set M ⊆ { 1, . . . , n } 3
ã ∑i∈M wi ≤ W and
ã ∑i∈M vi is maximized.

I By Chapter 6, there is a dynamic programming solution to Knapsack
that runs in O(n ·W) = O(n · 2|W|) time.

I There is a similar dynamic programming solution to Knapsack that
runs in O(n ·V) = O(n · 2|V|) time, where V = ∑n

i=1 vi.
I We use the O(n ·V) version as the basis for an approximation

algorithm.
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Approximating Knapsack, 2

function ksApprox(~v,~w, W, ε) // ε = an approximation factor
// Assume each wi ≤ W.
vmax ← max{ vi : i = 1, . . . , n }.
for i = 1, . . . , n do v̂i ←

⌊
vi · n

vmax · ε

⌋
. // Rescale the values

Run the dynamic programming algorithm using the v̂i values.
return the resulting choices of items

Runtime Analysis
I Since each v̂i ≤ n/ε, we have v̂1 + · · ·+ v̂n ≤ n2/ε.
I So the DP algorithm runs in O(n3/ε) time.
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Approximating Knapsack, 3

function ksApprox(~v,~w, W, ε) // ε = an approximation factor
// Assume each wi ≤ W.
vmax ← max{ vi : i = 1, . . . , n }.
for i = 1, . . . , n do v̂i ←

⌊
vi · n

vmax · ε

⌋
. // Rescale the values

Run the dynamic programming algorithm using the v̂i values.
return the resulting choices of items

Approximation Analysis Suppose:
I S is an optimal solution to the original problem with total value K∗.
I Ŝ is the solution produces for the scaled problem.

Then: ∑
i∈S

v̂i = ∑
i∈S

⌊
vi · n

vmax · ε

⌋
≥ ∑

i∈S

(
vi · n

vmax · ε
− 1
)
= K∗ · n

vmax · ε
− n.

So, the value of Ŝ is at least K∗ · n
vmax·ε − n. Hence, Correction: The boxed part

is what I missed in class.

∑
i∈Ŝ

vi ≥
vmax · ε

n ∑
i∈Ŝ

v̂i ≥
vmax · ε

n

(
K∗ · n

vmax · ε
− n

)
= K∗ − vmax · ε ≥ K∗(1− ε).
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The approximability hierarchy

v No finite approximation ratio is possible.
E.g., TSP.

v An approximation ratio of about log n is possible.
E.g., Set Cover.

v A constant approximation ratio is possible,
but there are limits to how small this can be.
E.g., Vertex Cover, k-Clustering, and metric TSP.
The proofs of these lower limit results are really hard!!!

v A constant approximation ratio is possible,
and in fact you can make αA arbitrarily close to 1.
E.g., Knapsack.

NOTE: All of the above assumes P 6=NP.
v If P=NP, all the problems can be solved exactly in polytime.
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Local search heuristics: The general scheme

s← any initial solution
while there is a solution s′ in the neighborhood of s with cost(s′) < cost(s) do

s← s′

return s

For any application of this scheme to a particular problem,
the key question what is a good notion of neighborhood?
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Local search heuristics: Traveling Salesman, 1

I Assume we have a complete graph on n vertices
(with a cost assigned to each edge).

I So there are (n− 1)! many tours.
I Two tours differ by at least two edges. (Why?)
I So let us try:

Tours T1 and T2 are neighbors when they differ by two edges.
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9.3.1 Traveling salesman, once more
Assume we have all interpoint distances between n cities, giving a search space of (n − 1)!
different tours. What is a good notion of neighborhood?
The most obvious notion is to consider two tours as being close if they differ in just a few

edges. They can’t differ in just one edge (do you see why?), so we will consider differences of
two edges. We define the 2-change neighborhood of tour s as being the set of tours that can be
obtained by removing two edges of s and then putting in two other edges. Here’s an example
of a local move:

We now have a well-defined local search procedure. How does it measure up under our two
standard criteria for algorithms—what is its overall running time, and does it always return
the best solution?
Embarrassingly, neither of these questions has a satisfactory answer. Each iteration is

certainly fast, because a tour has only O(n2) neighbors. However, it is not clear how many
iterations will be needed: whether for instance, there might be an exponential number of
them. Likewise, all we can easily say about the final tour is that it is locally optimal—that
is, it is superior to the tours in its immediate neighborhood. There might be better solutions
further away. For instance, the following picture shows a possible final answer that is clearly
suboptimal; the range of local moves is simply too limited to improve upon it.

To overcome this, we may try a more generous neighborhood, for instance 3-change, con-
sisting of tours that differ on up to three edges. And indeed, the preceding bad case gets
fixed:

But there is a downside, in that the size of a neighborhood becomes O(n3), making each
iteration more expensive. Moreover, there may still be suboptimal local minima, although
fewer than before. To avoid these, we would have to go up to 4-change, or higher. In this
manner, efficiency and quality often turn out to be competing considerations in a local search.
Efficiency demands neighborhoods that can be searched quickly, but smaller neighborhoods

I With this choice of “neighbor”:
1. What is the overall running time?
2. Does this always return an optimal answer?

I Answers:
1. Hard to say.
2. Of course not.
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Local search heuristics: Traveling Salesman, 2

I Tours T1 and T2 are neighbors when they differ by two edges.
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9.3.1 Traveling salesman, once more
Assume we have all interpoint distances between n cities, giving a search space of (n − 1)!
different tours. What is a good notion of neighborhood?
The most obvious notion is to consider two tours as being close if they differ in just a few

edges. They can’t differ in just one edge (do you see why?), so we will consider differences of
two edges. We define the 2-change neighborhood of tour s as being the set of tours that can be
obtained by removing two edges of s and then putting in two other edges. Here’s an example
of a local move:

We now have a well-defined local search procedure. How does it measure up under our two
standard criteria for algorithms—what is its overall running time, and does it always return
the best solution?
Embarrassingly, neither of these questions has a satisfactory answer. Each iteration is

certainly fast, because a tour has only O(n2) neighbors. However, it is not clear how many
iterations will be needed: whether for instance, there might be an exponential number of
them. Likewise, all we can easily say about the final tour is that it is locally optimal—that
is, it is superior to the tours in its immediate neighborhood. There might be better solutions
further away. For instance, the following picture shows a possible final answer that is clearly
suboptimal; the range of local moves is simply too limited to improve upon it.

To overcome this, we may try a more generous neighborhood, for instance 3-change, con-
sisting of tours that differ on up to three edges. And indeed, the preceding bad case gets
fixed:

But there is a downside, in that the size of a neighborhood becomes O(n3), making each
iteration more expensive. Moreover, there may still be suboptimal local minima, although
fewer than before. To avoid these, we would have to go up to 4-change, or higher. In this
manner, efficiency and quality often turn out to be competing considerations in a local search.
Efficiency demands neighborhoods that can be searched quickly, but smaller neighborhoods

I With this choice of “neighbor”:
What is the overall running time?
• Each tour has O(n2) neighbors,

so making the choice is not too expensive.
• But, the algorithm may well go through exponentially many iterations.
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Local search heuristics: Traveling Salesman, 3

I Tours T1 and T2 are neighbors when they differ by two edges.

298 Algorithms

9.3.1 Traveling salesman, once more
Assume we have all interpoint distances between n cities, giving a search space of (n − 1)!
different tours. What is a good notion of neighborhood?
The most obvious notion is to consider two tours as being close if they differ in just a few

edges. They can’t differ in just one edge (do you see why?), so we will consider differences of
two edges. We define the 2-change neighborhood of tour s as being the set of tours that can be
obtained by removing two edges of s and then putting in two other edges. Here’s an example
of a local move:

We now have a well-defined local search procedure. How does it measure up under our two
standard criteria for algorithms—what is its overall running time, and does it always return
the best solution?
Embarrassingly, neither of these questions has a satisfactory answer. Each iteration is

certainly fast, because a tour has only O(n2) neighbors. However, it is not clear how many
iterations will be needed: whether for instance, there might be an exponential number of
them. Likewise, all we can easily say about the final tour is that it is locally optimal—that
is, it is superior to the tours in its immediate neighborhood. There might be better solutions
further away. For instance, the following picture shows a possible final answer that is clearly
suboptimal; the range of local moves is simply too limited to improve upon it.

To overcome this, we may try a more generous neighborhood, for instance 3-change, con-
sisting of tours that differ on up to three edges. And indeed, the preceding bad case gets
fixed:

But there is a downside, in that the size of a neighborhood becomes O(n3), making each
iteration more expensive. Moreover, there may still be suboptimal local minima, although
fewer than before. To avoid these, we would have to go up to 4-change, or higher. In this
manner, efficiency and quality often turn out to be competing considerations in a local search.
Efficiency demands neighborhoods that can be searched quickly, but smaller neighborhoods

I With this choice of “neighbor”:
Does this always return an optimal answer?
• The final answer will be locally optimal, but not necessarily optimal.
• The problem is that this notion of neighbor is too myopic. E.g.,
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9.3.1 Traveling salesman, once more
Assume we have all interpoint distances between n cities, giving a search space of (n − 1)!
different tours. What is a good notion of neighborhood?
The most obvious notion is to consider two tours as being close if they differ in just a few

edges. They can’t differ in just one edge (do you see why?), so we will consider differences of
two edges. We define the 2-change neighborhood of tour s as being the set of tours that can be
obtained by removing two edges of s and then putting in two other edges. Here’s an example
of a local move:

We now have a well-defined local search procedure. How does it measure up under our two
standard criteria for algorithms—what is its overall running time, and does it always return
the best solution?
Embarrassingly, neither of these questions has a satisfactory answer. Each iteration is

certainly fast, because a tour has only O(n2) neighbors. However, it is not clear how many
iterations will be needed: whether for instance, there might be an exponential number of
them. Likewise, all we can easily say about the final tour is that it is locally optimal—that
is, it is superior to the tours in its immediate neighborhood. There might be better solutions
further away. For instance, the following picture shows a possible final answer that is clearly
suboptimal; the range of local moves is simply too limited to improve upon it.

To overcome this, we may try a more generous neighborhood, for instance 3-change, con-
sisting of tours that differ on up to three edges. And indeed, the preceding bad case gets
fixed:

But there is a downside, in that the size of a neighborhood becomes O(n3), making each
iteration more expensive. Moreover, there may still be suboptimal local minima, although
fewer than before. To avoid these, we would have to go up to 4-change, or higher. In this
manner, efficiency and quality often turn out to be competing considerations in a local search.
Efficiency demands neighborhoods that can be searched quickly, but smaller neighborhoods

I If we allow three-edge changes, then:
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9.3.1 Traveling salesman, once more
Assume we have all interpoint distances between n cities, giving a search space of (n − 1)!
different tours. What is a good notion of neighborhood?
The most obvious notion is to consider two tours as being close if they differ in just a few

edges. They can’t differ in just one edge (do you see why?), so we will consider differences of
two edges. We define the 2-change neighborhood of tour s as being the set of tours that can be
obtained by removing two edges of s and then putting in two other edges. Here’s an example
of a local move:

We now have a well-defined local search procedure. How does it measure up under our two
standard criteria for algorithms—what is its overall running time, and does it always return
the best solution?
Embarrassingly, neither of these questions has a satisfactory answer. Each iteration is

certainly fast, because a tour has only O(n2) neighbors. However, it is not clear how many
iterations will be needed: whether for instance, there might be an exponential number of
them. Likewise, all we can easily say about the final tour is that it is locally optimal—that
is, it is superior to the tours in its immediate neighborhood. There might be better solutions
further away. For instance, the following picture shows a possible final answer that is clearly
suboptimal; the range of local moves is simply too limited to improve upon it.

To overcome this, we may try a more generous neighborhood, for instance 3-change, con-
sisting of tours that differ on up to three edges. And indeed, the preceding bad case gets
fixed:

But there is a downside, in that the size of a neighborhood becomes O(n3), making each
iteration more expensive. Moreover, there may still be suboptimal local minima, although
fewer than before. To avoid these, we would have to go up to 4-change, or higher. In this
manner, efficiency and quality often turn out to be competing considerations in a local search.
Efficiency demands neighborhoods that can be searched quickly, but smaller neighborhoods

but then a tour has O(n3) neighbors and the choice part of the
algorithm slows down.
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Figure 9.8 Local search.

Figure 9.7 shows a specific example of local search at work. Figure 9.8 is a more abstract,
stylized depiction of local search. The solutions crowd the unshaded area, and cost decreases
when we move downward. Starting from an initial solution, the algorithm moves downhill
until a local optimum is reached.
In general, the search space might be riddled with local optima, and some of them may

be of very poor quality. The hope is that with a judicious choice of neighborhood structure,
most local optima will be reasonable. Whether this is the reality or merely misplaced faith,
it is an empirical fact that local search algorithms are the top performers on a broad range of
optimization problems. Let’s look at another such example.

9.3.2 Graph partitioning
The problem of graph partitioning arises in a diversity of applications, from circuit layout
to program analysis to image segmentation. We saw a special case of it, BALANCED CUT, in
Chapter 8.

GRAPH PARTITIONING
Input: An undirected graph G = (V,E) with nonnegative edge weights; a real
number α ∈ (0, 1/2].
Output: A partition of the vertices into two groups A and B, each of size at least
α|V |.
Goal: Minimize the capacity of the cut (A,B).
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Local search: Graph partitioning, 1

Graph partitioning
Given: G = (V, E), an undirected graph with
nonnegative edge wghts, and α ∈ (0, 1/2].
Return: A partition of V into A and B with

|A|, |B| ≥ α|V|.

Goal: Minimize the capacity of the (A, B)-cut.

Note: The general problem is reducible to
the special case of α = 1/2.
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Figure 9.9 An instance of GRAPH PARTITIONING, with the optimal partition for α = 1/2.
Vertices on one side of the cut are shaded.

Figure 9.9 shows an example in which the graph has 16 nodes, all edge weights are 0
or 1, and the optimal solution has cost 0. Removing the restriction on the sizes of A and B
would give the MINIMUM CUT problem, which we know to be efficiently solvable using flow
techniques. The present variant, however, is NP-hard. In designing a local search algorithm,
it will be a big convenience to focus on the special case α = 1/2, in which A and B are forced to
contain exactly half the vertices. The apparent loss of generality is purely cosmetic, as GRAPH
PARTITIONING reduces to this particular case.
We need to decide upon a neighborhood structure for our problem, and there is one obvious

way to do this. Let (A,B), with |A| = |B|, be a candidate solution; we will define its neighbors
to be all solutions obtainable by swapping one pair of vertices across the cut, that is, all
solutions of the form (A − {a} + {b}, B − {b} + {a}) where a ∈ A and b ∈ B. Here’s an example
of a local move:

We now have a reasonable local search procedure, and we could just stop here. But there
is still a lot of room for improvement in terms of the quality of the solutions produced. The
search space includes some local optima that are quite far from the global solution. Here’s
one which has cost 2.

Strategy:
I Start with a partition with |A| = |B|.
I Neighbors of (A, B) =

{ (A− { a }+ { b }, B− { b }+ { a }) : a ∈ A, b ∈ B }.

Jim Royer v Dealing with NP-Completeness 32



Local search: Graph partitioning, 1

Graph partitioning
Given: G = (V, E), an undirected graph with
nonnegative edge wghts, and α ∈ (0, 1/2].
Return: A partition of V into A and B with

|A|, |B| ≥ α|V|.

Goal: Minimize the capacity of the (A, B)-cut.

Note: The general problem is reducible to
the special case of α = 1/2.

302 Algorithms

Figure 9.9 An instance of GRAPH PARTITIONING, with the optimal partition for α = 1/2.
Vertices on one side of the cut are shaded.

Figure 9.9 shows an example in which the graph has 16 nodes, all edge weights are 0
or 1, and the optimal solution has cost 0. Removing the restriction on the sizes of A and B
would give the MINIMUM CUT problem, which we know to be efficiently solvable using flow
techniques. The present variant, however, is NP-hard. In designing a local search algorithm,
it will be a big convenience to focus on the special case α = 1/2, in which A and B are forced to
contain exactly half the vertices. The apparent loss of generality is purely cosmetic, as GRAPH
PARTITIONING reduces to this particular case.
We need to decide upon a neighborhood structure for our problem, and there is one obvious

way to do this. Let (A,B), with |A| = |B|, be a candidate solution; we will define its neighbors
to be all solutions obtainable by swapping one pair of vertices across the cut, that is, all
solutions of the form (A − {a} + {b}, B − {b} + {a}) where a ∈ A and b ∈ B. Here’s an example
of a local move:

We now have a reasonable local search procedure, and we could just stop here. But there
is still a lot of room for improvement in terms of the quality of the solutions produced. The
search space includes some local optima that are quite far from the global solution. Here’s
one which has cost 2.

Strategy:
I Start with a partition with |A| = |B|.
I Neighbors of (A, B) =

{ (A− { a }+ { b }, B− { b }+ { a }) : a ∈ A, b ∈ B }.
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Figure 9.9 An instance of GRAPH PARTITIONING, with the optimal partition for α = 1/2.
Vertices on one side of the cut are shaded.

Figure 9.9 shows an example in which the graph has 16 nodes, all edge weights are 0
or 1, and the optimal solution has cost 0. Removing the restriction on the sizes of A and B
would give the MINIMUM CUT problem, which we know to be efficiently solvable using flow
techniques. The present variant, however, is NP-hard. In designing a local search algorithm,
it will be a big convenience to focus on the special case α = 1/2, in which A and B are forced to
contain exactly half the vertices. The apparent loss of generality is purely cosmetic, as GRAPH
PARTITIONING reduces to this particular case.
We need to decide upon a neighborhood structure for our problem, and there is one obvious

way to do this. Let (A,B), with |A| = |B|, be a candidate solution; we will define its neighbors
to be all solutions obtainable by swapping one pair of vertices across the cut, that is, all
solutions of the form (A − {a} + {b}, B − {b} + {a}) where a ∈ A and b ∈ B. Here’s an example
of a local move:

We now have a reasonable local search procedure, and we could just stop here. But there
is still a lot of room for improvement in terms of the quality of the solutions produced. The
search space includes some local optima that are quite far from the global solution. Here’s
one which has cost 2.

• A = gray verts, B = white verts.

• Weights 0 and 1

• Optimal partition as cost 0.

Local search: Graph partitioning, 2

I Start with a partition with |A| = |B|.
I Neighbors of (A, B) =

{ (A− { a }+ { b }, B− { b }+ { a }) : a ∈ A, b ∈ B }.
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Figure 9.9 shows an example in which the graph has 16 nodes, all edge weights are 0
or 1, and the optimal solution has cost 0. Removing the restriction on the sizes of A and B
would give the MINIMUM CUT problem, which we know to be efficiently solvable using flow
techniques. The present variant, however, is NP-hard. In designing a local search algorithm,
it will be a big convenience to focus on the special case α = 1/2, in which A and B are forced to
contain exactly half the vertices. The apparent loss of generality is purely cosmetic, as GRAPH
PARTITIONING reduces to this particular case.
We need to decide upon a neighborhood structure for our problem, and there is one obvious

way to do this. Let (A,B), with |A| = |B|, be a candidate solution; we will define its neighbors
to be all solutions obtainable by swapping one pair of vertices across the cut, that is, all
solutions of the form (A − {a} + {b}, B − {b} + {a}) where a ∈ A and b ∈ B. Here’s an example
of a local move:

We now have a reasonable local search procedure, and we could just stop here. But there
is still a lot of room for improvement in terms of the quality of the solutions produced. The
search space includes some local optima that are quite far from the global solution. Here’s
one which has cost 2.
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Local search: Graph partitioning, 3

I The problem with this
notion of neighbor is that
there are stubborn local
minima.
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Figure 9.10 The search space for a graph with eight nodes. The space contains 35 solutions,
which have been partitioned into seven groups for clarity. An example of each is shown. There
are five local optima.

4 states, cost 2

1 state, cost 0

8 states, cost 3

8 states, cost 4

4 states, cost 6

2 states, cost 4

8 states, cost 3
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which have been partitioned into seven groups for clarity. An example of each is shown. There
are five local optima.

4 states, cost 2

1 state, cost 0

8 states, cost 3

8 states, cost 4

4 states, cost 6

2 states, cost 4

8 states, cost 3

20
19

-0
4-

17

Dealing with NP-Completeness

Local search: Graph partitioning, 3

304 Algorithms

Figure 9.10 The search space for a graph with eight nodes. The space contains 35 solutions,
which have been partitioned into seven groups for clarity. An example of each is shown. There
are five local optima.

4 states, cost 2

1 state, cost 0

8 states, cost 3

8 states, cost 4

4 states, cost 6

2 states, cost 4

8 states, cost 3

• Search space for a graph with 8 nodes.

• Then entire space has 35 solutions, but the picture has grouped these
into seven groups to cut the clutter.

• There are five local optima.



Dealing with local optima: Randomized Restarts

L← an empty list
repeat k times

s← a randomly chosen initial solution

while

(
there is a solution s′ in the neigh-
borhood of s with cost(s′) < cost(s)

)
do

s← s′

add s to L
end-repeat
return the best solution in L

This can shake free of bad local optima.
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Dealing with local optima: Simulated Annealing

s← a randomly chosen initial solution
repeat

s′ ← a randomly chosen solution in the neighborhood of s
∆← cost(s′)− cost(s)
if (∆ < 0) then s← s′

else with probability e−∆/T do s← s′

until we decide we are done

I T ≡ temperature
I If T ≈ 0 this is roughly the

previous scheme.
I If T is big, then s jumps around

a lot.
I We vary T, initially large (hot),

and gradually small (cooler).
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Figure 9.11 Simulated annealing.

Exercises
9.1. In the backtracking algorithm for SAT, suppose that we always choose a subproblem (CNF

formula) that has a clause that is as small as possible; and we expand it along a variable that
appears in this small clause. Show that this is a polynomial-time algorithm in the special case
in which the input formula has only clauses with two literals (that is, it is an instance of 2SAT).

9.2. Devise a backtracking algorithm for the RUDRATA PATH problem from a fixed vertex s. To fully
specify such an algorithm you must define:

(a) What is a subproblem?
(b) How to choose a subproblem.
(c) How to expand a subproblem.

Argue briefly why your choices are reasonable.
9.3. Devise a branch-and-bound algorithm for the SET COVER problem. This entails deciding:

(a) What is a subproblem?
(b) How do you choose a subproblem to expand?
(c) How do you expand a subproblem?
(d) What is an appropriate lowerbound?

Do you think that your choices above will work well on typical instances of the problem? Why?
9.4. Given an undirected graphG = (V, E) in which each node has degree≤ d, show how to efficiently

find an independent set whose size is at least 1/(d + 1) times that of the largest independent set.
9.5. Local search for minimum spanning trees. Consider the set of all spanning trees (not just mini-

mum ones) of a weighted, connected, undirected graph G = (V, E).
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