So the problem you want to solve is NP-Complete. ..

DPV Chapter 9

Dealing with
NP-Completeness Now what?

X Give up.
Jim Royer X Burn cycles and try to solve it exactly.
X Try the first thing that comes into your head and hope it produces
April 17,2019 correct answers and is fast enough to get by.

¢ Open a different tool box. (Chapter 9 of DPV.)

Uncredited diagrams are from DPV or homemade.
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Backtracking = exhaustive search + pruning Backtracking: The general scheme
Example: SAT via Backtracking First we need a fast test for subproblems such that
Letp = (wVxVyVz)A(wVI)A(xVY)AyVZ)A(zVE)A(@VZ). failure, if subproblem P has no solution;
test(P) = { success, if a solution to P is found;

( (wVaVyVz), (wVI),(zV7y),(yVZ),(zVD),(@VZz) ) uncertainty, otherwise.

w =0 w=1

Then:
(@vyve),@,@Vvy) V3 ) (Eve),wva, (). ) Ty ———y
J =1 2=0 a1 S+ { Py} // the set of active subproblems

while (5 # @) do
O.eva)  (@ve.0) (V) .0 Choosea P € S; S S—{P} For SAT:
Expand P into subproblems Py, ..., Py
for i < 1 to k do

(yV 2), @),y V?2)

» Choose = pick a clause

case test(P;) of > Expand = pick a
success: announce solution and halt variable in the clause
z2=0 failure: discard P;
(() - \/ r= False') uncertainty: add P; to S
xed Announce that there is no solution.
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Branch-and-Bound Branch-and-Bound Applied to TSP, 1

> B&B = the backtracking idea for optimization problems » G = (V,E) eache € E with length d, > 0.
> We consider minimization problems. » Fixana € V.
» First we need a fast way to compute lower bounds for the cost. » Partial solution: [a, S, b] = a path from a to b, S = the verts in this path
» Then: » Initial subproblem: [a,{a },a].
Start with some problem Py » Extension: [a,SU{x},x] wherex € (V —S) and (b,x) € E.
S < {Pg} // the set of active subproblems » lowerbound([a, S, b])
bestSoFar < oo = a lower bound on the cost of completing the partial tour [a, S, ]
while (S # @) do = the sum of:
Choose a P €8 5= 0=} + the cheapest edge fromato V —S.
Expand P into subproblems P, ..., Py +
; the cheapest edge frombto V —S.
LEg s Sl ROLSC D + the cost of a minimum spanning tree of V —S.
if (P; is a complete solution) then update bestSoFar
else if (lowerbound(P;) < bestSoFar) then add P; to S ?? Why is this a lower bound on the cost of completing the partial tour
return bestSoFar ) [a,S,b]?
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Branch-and-Bound Applied to TSP, 2 Approximation Algorithms
» Instead of seeking an optimum solution, try “close to optimum”
» The question is how close is good enough.
» opt(I) = the value of an optimum solution for instance I.
> Convention: Assume opt(I) is always a positive integer.
» Convention: Focus on minimization problems.
» Suppose A(I) is the solution for I an algorithm A returns.
» The approximation ratio for A is
A(D)
a4 = max 1.
A i Opt(I) —
> For maximization problems, take:
Cost: 11 ( )
Opt(1
xy = max > 1
A A T

> 28 partial solutions examined.
» 7! = 5,040 partial solutions in a brute-force search. » (The closer « 4 is to 1 the better.)
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Recall from Chapter 5: Set Cover, 1

Suppose Bisasetand Sy,...,5, C B.

Definition

(a) AsetcoverofBisa{S),...,5.} C{Si,...,Sm} withB C uﬁ.;ls;
(b) A minimal set cover of B is a set cover of B using as few of the S;-sets as

possible.

The Set Cover Problem (SCP)

Given: Band Sy,...,S,,; as above.

Find: A minimal set cover of B.
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Example
For: B={1,...,14} and
S1={12}

S, =1{3,4,5,6}
Ss=1{7,8,9,10,11,12,13,14 }
Sy =1{1,3,5,7,9,11,13}

S5 ={2,4,6,8,10,12,14 }

the solution to SCP is { Sy, S5 }.

Recall from Chapter 5: Set Cover, 3

A Greedy Approx. to SCP

// Input: Band Sy,...,5, CB
// Output: A near min. set cover
C+—O
while (all of B is not covered) do
Pick the S; with the largest
number of uncovered B-elms
C+«Cu{s;}

return C

Claim

Suppose B contains # elements

and the min. cover has k sets.

Then the greedy algorithm will

use at most klog, 1 sets.

Proof: Let

n; = the number of uncovered
elms after t-many while
loop iterations

Jim Royer % Dealing with NP-Completeness

So nyg = n.
After iteration t:
> there are n; elms left.
> k many sets cover them

» So there must be some set with at
least n¢ /k many elements.

> So by the greedy choice,
n 1
nt+1§nt—fznt <1_k>

t
:n()(l_ll() .

Recall from Chapter 5: Set Cover, 2

A Greedy Approximation to the Set Cover Problem

// Input: B and Sq,...,S;; C B as above.
// Output: A set cover of B which is close to minimal.

C+

while (some element of B is not yet covered) do
Pick the S; with the largest number of uncovered B-elements

C«+CU{S;}
return C
Example
B={1,...,14}
Si={12}

S ={3,4,56}

S3=1{7,8,9,10,11,12,13,14 }

Sy ={1,3,5,7,9,11,13}
Ss ={2,4,6,8,10,12,14 }
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On this, the algorithm returns

{Slr 52/ 53 }

Recall from Chapter 5: Set Cover, 4

A Greedy Approx. to SCP

// Input: Band Sy,...,5, CB
// Output: A near min. set cover
C+0O
while (all of B is not covered) do
Pick the S; with the largest
number of uncovered B-elms
C+«Cu{s;}

return C

Claim

Suppose B contains # elements

and the min. cover has k sets.

Then the greedy algorithm will

use at most klog, 1 sets.

Proof: Let

ny = the number of uncovered
elms after t-many while
loop iterations
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t
We know: 1,11 <n (1 — %) .

Fact: 1 —x < e *forall x,
with equality iff x = 0.




Recall from Chapter 5: Set Cover, 5

A Greedy Approx. to SCP

// Input: B and Sq,...,S, CB

Output: A near min. set cover
é/<_ @p Fact: 1 —x < e *forallx,

with equality iff x = 0.

t
We know: n;41 <n (1 - %

while (all of B is not covered) do
Pick the S; with the largest

number of uncovered B-elms CUAtE > kloge n, ny < ne—log.n — 1,

C«+«Cu{s;}

return C

i.e., we must have covered all of B.

So the greedy algorithm is optimal
Claim within a log, 1 factor.
Suppose B contains # elements

and the min. cover has k sets. That is,

Then the greedy algorithm will I

use at most klog 1 sets. &4 = max < log,n.
b A > opt) = %%

Proof: Let

ny = the number of uncovered
elms after t-many while
loop iterations
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Approximating Vertex Cover, 2

Definition
Suppose G = (V, E) an undirected graph.

(a) A matching is an M C E such that any two edges in M have no endpoints in

common.
(b) Mis a maximum matching when for each e € (E—M), MU {e} failstobe a
matching.
Observations
» Maximal matchings are easy to construct. (How?)
> Fix G.
> If Cis a vertex cover and M is a maximum matching,
then each (u,v) € M must have at least one of  and v in C. (Why?)

", (the size of a min. vertex cover for G) > (the size of a max. matching for G)

> If M is a maximal matching,

then S = {u | uis an endpoint of ane € M } is a vertex cover. (Why?)

.. |S] = 2|M| > (the size of a min. vertex cover for G) > |M]|.
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Approximating Vertex Cover, 1

Vertex Cover (as an optimization problem)
Given: G = (V,E) an undirected graph
Find: S C V such that S touches every edge.
Goal: Minimize |S|.
> Vertex Cover is a special case of Set Cover.
» Therefore, it can be approximated within a O(logn) factor.

» Howeuver, it turns out we can do much better.
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Approximating Vertex Cover, 3

An approximation algorithm for Vertex Cover

input G = (V,E)
Find a maximal matching M C E.
return S = {u | u is an endpoint of ane e M }

> By the Observations, the approximation ratio of this algorithm is & 4 < 2.

> In fact, you can find examples where the ratio is exactly 2.

.". The approximation ratio of t/iis algorithm is « 4 = 2.
» What about other algorithms?

Amazing Fact (Dinur and Safra, 2005)

Minimum vertex cover cannot be approximated within a factor of 1.3606 for

any sufficiently large vertex degree unless P=NP.
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Clustering, 1

Definition
A metric on a space X is a functiond: X x X — R=0 @
such that, for all x,y,z € X: ‘

. d(x,y) > 0. C
YY) =0 = x=uy.

S d(x,y)
- d(x,y) = d(y,x). data points/four clusters
Cd(xy) <d(x,z)+d(zy).

—_

= W N

k-Clustering
Input: Points X = { x1,...,x, }, metric d, integer k > 0.
Output: A partition of X into k clusters Cy, ..., Cy.

Goal: Minimize the diameter of the clusters: max max d(x,x").
j xx'eC
» k-Clustering is NP-complete. ‘,

> k-Clustering is important in lots of areas (e.g., data mining).
See http://en.wikipedia.org/wiki/K-means_clustering
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Traveling Salesman with metric distances, 1

Traveling Salesman Problem

Given: n vertices and all n - (n — 1) /2-many distances between them.
Find: An ordering of 1,...,n: (1), (2),..., t(n) so that the tour’s cost
d(r(1),m(2)) +d(m(2),7(3)) + - - +d(m(n),m(1)) is minimal.

Question: Suppose we require the distances to come from a metric. Does
this help make the problem easier? Answer: Yes!

Definition (Repeated)
A metric on a space X is a function d: X x X — R=? such that, for all
XY,z € X:

1. d(x,y) > 0.

2.dxy) =0 = x=uy.

3.d(x,y) =d(y,x).
4.d(x,y) <d(x,z)+d(zy).
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Clustering, 2

Approximation Algorithm for k-Clustering

Pick any point p; € X to start
for i < 2 to k do
pi < a point in X that is farthest away from pq,...,p;_1
// le., pi maximizes: min{d(-,p;) : j=1,...,i—1}
Create k clusters: C; = {x € X : p; is the closest center }

Claim: For the above algorithm, a 4 < 2.
Proof:

> Let x be the point farthest from > The points py, ..., px and x are all

P1-- s Pk > r distant from one another.
> Let r = the distance of x to the > Any partition of X into k cluster
nearest p;. must put two of py, ..., pg, x into

.". Bvery point must be within r from the same cluster. (By the PHP)

its cluster center. ‘. These clusters must have diameter

.". The diameter of the clusters is < 2r. >7. QED
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Traveling Salesman with metric distances, 2

> Take a TSP path and delete an edge.
The result is a spanning tree.

*. (cost of a MST for G)
< (cost of a solutions to TSP for G)

» Now take T, a MST for G.
Turn T into a tour that uses each edge twice.

» Letcy,...,cy, be the cities on the tour —
in the order they are first visited.

> Edit the tour so that from city c; the tour
shortcuts to city ¢;;1 and from city ¢, it
shortcuts to city c;.

> By the triangle inequality, the shortcuts can
keep the cost the same or improve it.

*. (cost of a solutions to TSP for G)
< 2 % (cost of a MST for G)

*. We can approximate the metric version of
TSP within a factor of 2.
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http://en.wikipedia.org/wiki/K-means_clustering

RECALL: Rudrata/Hamiltonian Cycle < TSP

Rudrata/Hamiltonian Cycle Problem
Given: G = (V,E), an undirected graph.
Find: A simple cycle that visits each vertex of G.

Traveling Salesman Problem (TSP)

n-(n—1)

Given: V/, n vertices; all -many distances between them; and b, a budget
Find: 7, an ordering of 1,...,n, such that }}" ; dn(i),n-(1+(l’ mod 1)) <b.

Construction of I(G, C).

Given G = (V,E) and C > 1, define Claim: (V,E) has a R/H cycle

<= (V',d) has tour of cost < b.
V=V IfC>1:

. 1, if (i,j) € E;
" 11+4C, otherwise.
b=1V|

.". An approx. solution to (the full) TSP would let us solve Ham. Cycle in polytime!
How? (See next page.)

> Gap: either a solution of cost 1,
or solutions with costs > n + C,
but none inbetween.
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Approximating Knapsack, 1

Knapsack without repetition
Given: Find:asetM C {1,...,n} >
> ZiEMwi S W and

> Y iem Vi is maximized.

> A knapsack with capacity W.
> Jtems1,...,n

> Item i has weight w; & value v;.

» By Chapter 6, there is a dynamic programming solution to Knapsack
that runs in O(1 - W) = O(n - 2IW) time.

» There is a similar dynamic programming solution to Knapsack that
runs in O(n - V) = O(n - 2IV1) time, where V = ¥, v;.

> We use the O(n - V) version as the basis for an approximation
algorithm.
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Approximating General TSP

Claim

An approximate solution to TSP would give us polytime solution of
Rudrata Path.

Proof

> Suppose that we had A, a polytime approximation algorithm for TSP
with approximation factor « 4.

> Suppose G is any instance of Rudrata Path.

» Construct I(G,C) where C = a4 - n and run A on it.

» If G has a Rudrata path, then OPT(I(G,C)) = n and
A finds a TSP tour of cost a 4 - OPT(I(G,C)) = a4 - n.

» If G has no Rudrata path, then .4 must return a tour of cost > « 4 - n.

» Since A is supposed to run in polytime,
this means we can decide Rudrata path in polytime!!!!

Corollary

» If TSP has a polytime approximation algorithm, then P=NP.
» [f P#NP, then TSP has no polytime approximation algorithm.
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Approximating Knapsack, 2

function ksApprox(d,w, W,e) // € = an approximation factor
// Assume each w; < W.
Umax ¢ max{v; : i=1,...,n}.

. N VN
fori=1,...,n do 9 < L

J . // Rescale the values
Umax * €

Run the dynamic programming algorithm using the 9; values.
return the resulting choices of items

Runtime Analysis
» Since each 9; < n/e, we have 91 + - - - + 9, < n?/e.
> So the DP algorithm runs in O(n%/¢€) time.
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Approximating Knapsack, 3

function ksApprox(7,@, W,e) // € = an approximation factor
// Assume each w; < W.
Umax ¢ max{v; : i=1,...,n}.
vi-n

fori=1,...,ndo 9; + J // Rescale the values
Umax * €
Run the dynamic programming algorithm using the 9; values.

return the resulting choices of items

Approximation Analysis Suppose:
> S is an optimal solution to the original problem with total value K*.

> §is the solution produces for the scaled problem.

Then: Z@i:Z{MJEZ<ﬂ—1):K*-L—n.

icS ics LUmax - € ics \Umax - € Umax * €
So, the value of § is at least K* - —— — 5. | Hence, .Correcnon:. 1 b G (R
Umax "€ is what I missed in class.

- n Umax * €

Umax - € Umax - € n
Evi> max Ef)iz max (K* —n) =K* — Umax - € > K*(1—¢).
ie§ i
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Local search heuristics: The general scheme

s <— any initial solution

while there is a solution s’ in the neighborhood of s with cost(s") < cost(s) do
s« ¢

return s

For any application of this scheme to a particular problem,
the key question what is a good notion of neighborhood?
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The approximability hierarchy

% No finite approximation ratio is possible.
E.g., TSP.

“» An approximation ratio of about log n is possible.
E.g., Set Cover.

A constant approximation ratio is possible,

but there are limits to how small this can be.

E.g., Vertex Cover, k-Clustering, and metric TSP.
The proofs of these lower limit results are really hard!!!

% A constant approximation ratio is possible,
and in fact you can make « 4 arbitrarily close to 1.
E.g., Knapsack.

NOTE: All of the above assumes P#NP.
% If P=NP, all the problems can be solved exactly in polytime.

Jim Royer % Dealing with NP-Completeness 26

Local search heuristics: Traveling Salesman, 1

> Assume we have a complete graph on n vertices
(with a cost assigned to each edge).

> So there are (n — 1)! many tours.
> Two tours differ by at least two edges. (Why?)

> So let us try:
Tours Tq and T, are neighbors when they differ by two edges.

[ X ]—[ 1

» With this choice of “neighbor”:
2. Does this always return an optimal answer?

1. What is the overall running time?
> Answers:

1. Hard to say.
2. Of course not.
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Local search heuristics: Traveling Salesman, 2

» Tours Ty and T, are neighbors when they differ by two edges.

[ X ]—[ 1

» With this choice of “neighbor”:
What is the overall running time?
e Each tour has O(n?) neighbors,
so making the choice is not too expensive.
o But, the algorithm may well go through exponentially many iterations.
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Local search heuristics: Optima, Local vs. global

DX

VAN

/

local optima
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Local search heuristics: Traveling Salesman, 3

» Tours Ty and T, are neighbors when they differ by two edges.

[ X

» With this choice of “neighbor”:

[ ]

Does this always return an optimal answer?

o The final answer will be locally optimal, but not necessarily optimal.

o The problem is that this notion of neighbor is too myopic. E.g.,

[V ]

» If we allow three-edge changes, then:

[V =]

but then a tour has O(n®) neighbors and
algorithm slows down.
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the choice part of the

Local search: Graph partitioning, 1

Graph partitioning

Given: G = (V, E), an undirected graph with
nonnegative edge wghts, and a € (0,1/2].
Return: A partition of V into A and B with

Al |B| > a|V].

Goal: Minimize the capacity of the (A, B)-cut.

Note: The general problem is reducible to
the special case of « = 1/2.
Strategy:
> Start with a partition with |A| = |B|.
» Neighbors of (A, B) =

o—O

{(A={a}+{b},B—{b}+{a}) : acAbeB}.
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Dealing with NP-Complet e
camg OmPIEIEness Local search: Graph partitioning, 2

LLocal search: Graph partitioning, 1

2019-04-17

» Start with a partition with |A| = |B].
» Neighbors of (A,B) =

o—o©
{(A-{a}+{b},B—{b}+{a}) :acAbeB}.
e—o© oO—o0 oO—o0
o—©0 o—©0
o—O
—_—

o—©

e A = gray verts, B = white verts. e—O O—O

o Weights 0 and 1

o Optimal partition as cost 0.
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L Dealing with NP-Complet
Local search: Graph partitioning, 3 camms OPIEIEness

L Local search: Graph partitioning, 3

2019-04-17

> The problem with this
notion of neighbor is that
there are stubborn local
minima.

e Search space for a graph with 8 nodes.

o Then entire space has 35 solutions, but the picture has grouped these
into seven groups to cut the clutter.

I I:I I o There are five local optima.
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Dealing with local optima: Randomized Restarts Dealing with local optima: Simulated Annealing

s <— a randomly chosen initial solution
repeat
s’ + a randomly chosen solution in the neighborhood of s
A < cost(s') — cost(s)
if (A <0) then s« ¢
> else with probability e=2/T do s « s’
d

L < an empty list
repeat k times
s <— a randomly chosen initial solution
. <there is a solution s’ in the neigh-
while

borhood of s with cost(s") < cost(s) until we decide we are done

s ¢
add s to L > T = temperature
Gl I > If T ~ 0 this is roughly the

return the best solution in L

y previous scheme.

> If T is big, then s jumps around

This can shake free of bad local optima. lot
alot.

> We vary T, initially large (hot),
and gradually small (cooler).
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